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ABSTRACT

In this thesis, we are interested in learning the bases from natural sounds. The null-space

algorithm, proposed by Chen and Wu (2002) and Chen (2003), is applied here for solving thus

problem. Based on two different source assumptions, we demonstrate what bases we learn from

monkey sounds. Finally we compare these bases according to the different source assumptions.

Keywords : independent component analysis, overcomplete representation, null-space algo-

rithm, noiseless model.
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1 Introduction

Natural signals have been characterized statistical dependencies across space and time. One

viewpoint of sensory systems is that they need to uncover these dependencies by processing

them with filters whose form depends on the characteristic statistics of the ensemble of signals to

which they are exposed (Barlow, 1989, and Atick and Redlich, 1990). This is called the reduce

redundancy principle (Barlow, 1961 and 1989). Under this principle, the decompositions of

the observations should be as independent as possible. In order to reduce the dependence

among the observations, Independent Component Analysis (ICA, e.g., Comon, 1994, and Bell

and Sejnowski, 1995) is one of the efficient algorithms to elucidate the higher-order statistics

of natural signals. In ICA, the observations are assumed to be the linear mixtures of the

independent sources. Let m be the number of observations, and M be the number of the

independent sources. Then the observations is represented as

xi = ai1s1 + · · ·+ aiMsM , i = 1, . . . , m,

where xi is the ith observation; sj is the jth source, j = 1, · · · ,M , and aij is the corresponding

coefficient of the jth source to the ith observation. Using the vector-matrix notation, this learn

model is written as

x = As, (1)

where x = (x1, · · · , xm)′ is an m-dimensional observation vector, s = (s1, · · · , sM)′ is an M-

dimensional source vector, and A is an m×M unknown basis matrix, and the Equation (1) is

called independent component analysis (or ICA) model. In ICA algorithm, the mixing matrix

A is assumed to be an invertible square matrix. That is the number of observations is the same

as the number of sources, i.e. M = m. Hence the goal of ICA is to find an invertible square

matrix W that makes outputs as independent as possible, i.e.,

u = Wx = WAs,

where u is considered as an estimate of the source vector. The sources could be exactly recovered

when W is the inverse of A up to a permutation and scale change, i.e.

WA = RS,

where R is a permutation matrix, and S is the scaling matrix.

Besides ICA algorithm, Olshausen and Field (1996) proposed a similar learning algorithm,

Sparse Coding, for recovering the independent sources based on the noise model, i.e.

x = As + ε (2)
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where x = (x1, · · · , xm)′ is an m-dimensional observation vector; s = (s1, · · · , sM)′ is an M -

dimensional source vector; A is an m×M basis matrix, and ε = (ε1, · · · , εm)′ is Gaussian additive

noise. Since in Sparse Coding, there is no restriction on the number of observations and sources,

i.e. A may not be the square matrix, Olshausen and Field (1997) studied the sparse coding

for the overcomplete situation. That is the A is a rectangular matrix with more columns than

rows (M > m). Based on the same noise model, Equation (2), Lewicki and Olshausen (1999),

and Lewicki and Sejnowski (2000) proposed the overcomplete representation by approximating

the likelihood function with a Gaussian mound around the posterior estimation and can be

considered as the extension of complete ICA. However, the original ICA model is a noiseless

model. For this ”noiseless” model, Chen and Wu (2002) and Chen (2003) proposed the null-

space algorithm for the overcomplete independent component analysis. In their work, the model

is

x = As

where x = (x1, · · · , xm)′ is an m-dimensional observation vector, s = (s1, · · · , sM)′ is an M -

dimensional source vector, A is an m×M rectangular basis matrix with M > m. Except the

null-space algorithm, ICA, sparse coding and overcomplete representation have been applied

successfully in learning the bases from image patches and natural sounds. For example: Bell

and Sejnowski (1996) applied ICA algorithm to learn the higher order structures of natural

sounds, and Lewicki and Sejnowski (2000) studied the human speech signals by overcomplete

representation. In this work, we are interested in learning the bases from natural sounds by

the null-space algorithm, i.e. estimate the unknown matrix A.

This thesis is organized as the follows. In Section 2, the null-space algorithm will be

introduced. Then we apply this algorithm to learn the bases from natural sounds, and the

results are shown in Section 3. Finally a discussion is given in Section 4.

2 Null-space algorithm

Consider the model

xt = Ast, t = 1, · · · , T, (3)

where xt = (x1t, · · · , xmt)
′ collects the observation vector at time t, st = (s1t, · · · , sMt)

′ collects

the source vector at time t, and A is an m × M basis matrix with M > m. Since A is a

rectangular matrix, the matrix A can be decomposed by singular value decomposition (SVD),

i.e.

A = U ( D 0 ) V ′,
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where U is an m×m orthogonal matrix; V is an M×M orthogonal matrix; 0 is an m×(M−m)

zero matrix, and D is an m×m diagonal matrix with the real diagonal elements, di, such that

d1 ≥ d2 · · · ≥ dm ≥ 0.

Hence, the solutions of Equation (3) can be represented as

st = A−xt + V2ct,

= V1D
−1U ′xt + V2ct

= V

[ (
D−1

0

)
U ′xt +

(
0

IM−m

)
ct

]
, (4)

where A− = V1D
−1U ′ is a generalized inverse of A; V1 = (v1, · · · , vm) is the bases of the row

space of A; V2 = (vm+1, · · · , vM) is the bases of the null space of A; vi is the ith column of V ,

and ct is a vector of coordinates in the null space. Then Equation (4) is called the null-space

representation.

Assume the joint distribution of sources s1, · · · , sT to be P (s1, · · · , sT ). With the null space

representation, we have the joint pdf of x1, · · · ,xT and c1, · · · , cT ,

P (c1, · · · , cT ,x1, · · · ,xT |A) = P (s1, · · · , sT )|D|−T .

Here x1, · · · ,xT are observations; c1, · · · , cT are latent variables, and A = U ( D 0 ) V ′ is the

unknown parameter. Based on Bayesian framework, we put uniform priors on U , V and log(D).

The reason for why we can work on log(D) is that D is a scaling matrix. Then the posterior

distribution of A is

P (U, V, log(D)|c1, · · · , cT ,x1, · · · ,xT )

∝ P (U, V, log(D))P (c1, · · · , cT ,x1, · · · ,xT |U, V, log(D)). (5)

According to this posterior, the estimation of the unknown parameter A can be found by the

data augmentation algorithm of Tanner and Wong (1987). In fact, the data augmentation

algorithm is a stochastic version of the EM algorithm (Dempster, Laird, and Rubin, 1997),

which iterates of the two steps :

Step 1. Recovering st by sampling from P (c1, · · · , cT |x1, · · · ,xT , A), it means the distribution

of the missing data given the observed data and the parameter.

Step 2. Estimating A by sampling from P (U, V, log(D)|c1, · · · , cT ,x1, · · · ,xT ), it means com-

plete data posterior distribution.
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Here P (c1, · · · , cT |x1, · · · ,xT , A) and P (U, V, log(D)|c1, · · · , cT ,x1, · · · ,xT ) are all proportional

to the joint posterior, Equation (5). The difference of them is which is fixed and which is

random.

To perform these two steps, Chen and Wu (2002) and Chen (2003) proposed the null-

space algorithm. There are two parts in this algorithm. One is inhibition algorithm, and the

other one is Givens sampler. We would describe these two algorithms in the following :

Part 1. Inhibition algorithm: This algorithm is to sample ct from their conditional distribu-

tion P (c1, · · · , cT |x1, · · · ,xT , A) by Langevin-Eular moves. Assume the target distribution

is π(c) ∝ exp(−H(c)). Then

c(τ + 1) = c(τ)− h

2

∂H(c)

∂c
|c=c(τ) +

√
hZτ , (6)

where c(τ) is the value of c at τ th iteration of the Langevin-Euler process, i.e. c(τ) collects

the value of (c1, · · · , cT ) at the τ th iteration of Langevin-Euler move, Zτ is white noise

vector, and h > 0 is a suitable constant.

Part 2. Given sampler: This method is used to sample the orthogonal matrices U and V ,

and to estimate the diagonal matrix D from their posteriors. As mentioned before, we

work on the log scale with wi = log(di), and w1, · · · , wm satisfy w1 > · · · > wm. The prior

of w1, · · · , wm is assumed to be uniform with the order constraint. Hence the posterior

distribution of w1, · · · , wm is

P (w1, · · · , wm|x1, · · · ,xT , c1, · · · , cT , U, V )

∝ P (s1, · · · , sT ) exp(−T

m∑
i=1

wi)).

Therefore the maximum a posterior (MAP) estimation of w = (w1, · · · , wm)′ can be found

by solving

∂ log P (s1, · · · , sT )

∂w
= T

∂
∑m

i=1 wi

∂w
. (7)

Now we consider how to sample U and V from their posterior distributions. The columns

of U and V are orthogonal to each other, and we must maintain the orthogonality when

we update U and V . Hence it is not good to sample U and V directly. So we accomplish

this work with the following procedure. Suppose we want to update U . We randomly

select two columns ui, and uj of U , and rotate them by an angle θij on the plane spanned

by the two vectors, i.e,

ui ← ui cos θij + uj sin θij,

uj ← −ui sin θij + uj cos θij.
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The distribution of θij can be easily derived from the posterior distribution of U given

everything else, i.e.,

P (θij) ∝ P (c1, · · · , cT ,x1, · · · ,xT |A = U(i, j, θij) ( D 0 ) V ) (8)

and θij can be drawn from P (θij) by the inversion method. Based on this procedure, we

can maintain the orthogonality of all the column vectors, and the updating procedure is

the same for V .

Here we summarize the null-space algorithm. The null-space algorithm iterates the fol-

lowing two steps :

Recovering source vector st :

We use the Langevin-Euler moves to sample the null-space coefficient c = (c1, · · · , cT ) from its

condition distribution, and then update the sources according to the null-space representation.

Estimating basis matrix A :

Based on the updating sources, we can get the estimation of D by solving Equation (7) and

update two columns of U or V by sampling the corresponding angle from Equation (8).

3 Experimental Results

In this thesis, we want to learn the bases from the natural sounds by null-space algorithm,

and to see if there exist some special local structures in the bases. The observations we use

here is the monkey’s sound with 120 samples. The unrecovered sources are assumed to be

independent at time t, and to come from a generalized gaussian distribution (GGD). Hence,

the joint pdf of s1, · · · , sT is

P (s1, · · · , sT ) =
T∏

t=1

P (st)

=
T∏

t=1

[
M∏
i=1

P (sit)]

=
T∏

t=1

M∏
i=1

λ

2
exp{−λ|sit|r}, (9)

where r denotes the shape parameter, and λ is related to the variance of the distribution. Here,

the bases are learned by the null-space algorithm based on different shape parameters. Before

running the null-space algorithm, we center the observations and do a whitening transformation

on the observations to make the problem simpler.
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3.1 GGD with r=1

When r = 1, the generalized gaussian distribution is the double exponential distribution.

Then the joint distribution of s1, · · · , sT is

P (s1, · · · , sT ) =
T∏

t=1

P (st)

=
T∏

t=1

[
M∏
i=1

P (sit)]

=
T∏

t=1

M∏
i=1

λ

2
exp{−λ|sit|}

= (
λ

2
)MT exp{−λ

T∑
t=1

M∑
i=1

|sit|} (10)

Based on this source assumption, we consider different sample sizes of observations to see if

there exists any special pattern in the bases.

Case 1. In this case, for each time t, each observation vector xt is 30×1, and the source vector

st is assumed to be 40 × 1 . Then the basis matrix A a is 30 × 40 matrix. After 40000

iterations, the basis vectors are shown in Figure 1, and the distributions of recovered

sources with the corresponding kurtoses are shown in Figure 2.

Case 2. In this case, for each time t, each observation vector xt is 40×1, and the source vector

st is assumed to be 50 × 1. Then the basis matrix A a is 40 × 50 matrix. After 60000

iterations, the basis vectors are shown in Figure 3, and the distributions of recovered

sources with the corresponding kurtoses are shown in Figure 4.

Case 3. In this case, for each time t, each observation vector xt is 50×1, and the source vector

st is assumed to be 60 × 1. Then the basis matrix A is a 50 × 60 matrix. After 90000

iterations, the basis vectors are shown in Figure 5, and the distributions of recovered

sources with the corresponding kurtoses are shown in Figure 6.
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Figure 1: The patterns of the learned bases when the size of the mixing matrix A is 30× 40.
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Figure 2: Distributions of learned sources and their corresponding kurtoses.
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Figure 3: The patterns of the learned bases when the size of the mixing matrix A is 40× 50.
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Figure 4: Distributions of learned sources and their corresponding kurtoses.
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Figure 5: The patterns of the learned bases when the size of the mixing matrix A is 50× 60.
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Figure 6: Distributions of learned sources and their corresponding kurtoses.
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3.2 GGD with r=0.5

After the experiments with the double exponential distributed assumption, we consider an-

other generalize gaussian distribution with shape parameter r = 0.5. The joint distribution of

s1, · · · , sT is

P (s1, · · · , sT ) =
T∏

t=1

P (st)

=
T∏

t=1

[
M∏
i=1

P (sit)]

=
T∏

t=1

M∏
i=1

λ

2
exp{−λ|sit|0.5}

= (
λ

2
)MT exp{−λ

T∑
t=1

M∑
i=1

|sit|0.5} (11)

In this case, for each time t, each observation vector xt is 30 × 1, and the source vector st

is assumed to be 40 × 1. Then basis matrix A is a 30 × 40 matrix. After 40000 iterations,

the basis vectors are shown in Figure 7, and the distributions of recovered sources with the

corresponding kurtoses are shown in Figure 8.
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Figure 7: The patterns of the learned bases when the size of the mixing matrix A is 40× 40.
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Figure 8: Distributions of learned sources and their corresponding kurtoses.
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4 Discussion

In our work, the bases of natural sounds are learned by the null-space algorithm with

the different source assumptions. Since all we have is the observations, how to get good results

depends on the assumptions of sources. Here the marginal distributions of sources are assumed

to be the generalized gaussian distributions with shape parameter r = 1 and r = 0.5, i.e.

P (s1, · · · , sT ) = (
λ

2
)MT exp{−λ

T∑
t=1

M∑
i=1

|sit|}

and

P (s1, · · · , sT ) = (
λ

2
)MT exp{−λ

T∑
t=1

M∑
i=1

|sit|0.5}.

According to the results in Lewicki and Sejnowski (2000), what we want to do is to see if there

exist localized structures in the bases. With the same observations, we compare the patterns

of learned bases in Figure 1 and Figure 7. It seems that the bases in Figure 7 contain more

localized and special structures than the bases in Figure 1. The distributions of the learned

sources must have the sharp peak at zero and heavy tails, because the sources are assumed to

follow the sparse distributions. Hence, we plot the histograms of distributions of sources to see

the sparseness of sources. Clearly, most source distributions of GGD assumption with r = 0.5

have higher sharp peak at zero than those of double exponential assumption, and they also

have the higher kurtoses. Therefore, we prefer the generalized gaussian distribution with shape

parameter r = 0.5 to be the marginal distribution of our sources in our experiment.

In this thesis, we assume sound signals, sij, follow an independently identical distribution.

However, the sound signals should not be independent in the real world. Lewicki (2002) assumed

the signal observation x(t) in a time window of length N to learn bases. That is

si(t) =
N∑

τ=0

x(τ)ai(t− τ)

si(t) is the ith source, i = 1, · · · ,M , and ai(t) is the bases of natural sounds at time t. Hence,

the sources assumption is not time independent, and we may apply this idea with the null-space

algorithm to learn bases from natural sounds.

Here we only consider the size of basis matrix A being 30× 40; 40× 50 or 50× 60. These

size may be too small to catch the localized structures. Hence we suggest to use bigger basis

matrix. However, the bigger matrix is, the more computing time we need to learn. Therefore,

we should improve our programming ability to have more efficient code. Besides learning the

bases from natural sounds, Olshausen and Field (1996), Lewicki and Olshausen (1999), and

Olshausen and Millman (2000) also considered the problems on learning the bases from image

16



patches . Hence it could be interested to apply the null-space algorithm into small image

patches to see what bases we would learn from images. As we mentioned before, we need to

have more efficient coding ability because for images, the size of A should be larger and larger.

For example A is assumed to be 64× 128 in Olshausen and Millman (2000).
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