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ABSTRACT

It is well known that statistical control charts such as Shewhart, CUSUM and
EWMA charts have found widespread applications in improving the quality for man-
ufacturing and service processes. The average run length is a traditional measure-
ment of a control chart’s performance. Usually, finding the run-length distribution
and the average run length is a difficult and tedious task. In this thesis, we develop
an unified approach based on the use of discretization and the finite Markov chain
imbedding technique to investigate the run length properties of control charts when
the observations have an autocorrelated structure. Numerical results are presented

to illustrate our approach.

Keywords : Control chart, Average run length, Autoregressive process, Finite

Markov chain imbedding, Discretization.



Chapter 1

Introduction

Control chart, one of the primary techniques of statistical process control (SPC), has
been demonstrated to be an effective tool in reducing the variability and improving
the quality of a process. It has been successfully used in many manufacturing and
service processes. Shewhart chart, cumulative sum (CUSUM) chart and exponen-
tially weighted moving average (EWMA) chart may be the most frequently studied
control charts in the literature. Usually, assumptions concerning these charts are
that the observations generated by the underlying process are independently and
normally distributed with mean zero and variance o2. Unfortunately, such assump-
tions are sometimes violated in practice. In many manufacturing processes such as
chemical processes, observations are always autocorrelated (see Montgomery, 2005).
In the past decades, a considerable amount of contexts related to control charts in
the presence of autocorrelation have been proposed. Some pertinent references in-
clude Johnson and Bagshaw (1974), Bagshaw and Johnson (1975), Bohm and Hackl
(1996), Alwan and Robert (1988), Montgomery and Mastrangelo (1991), Harris
and Ross (1991), Lu and Reynolds (1999, 2001), Yashchin (1993), Schmid (1997),
VanBrackle and Reynolds (1997), Zhang (1998), Tseng and Adams (1994).

Traditionally, average run length (ARL) is the major criterion for measuring
the performance of a control chart. When a chart is in control, it is always desirable
to have a large ARL. On the other hand, a small ARL is preferable when an out of
control condition has occurred in the chart. It has been found that the performance
of traditional control charts is significantly affected by autocorrelated data. Two
important effects of autocorrelation are that the in-control ARL becomes much

smaller (except for Shewhart control charts) when the correlation is positive and the



out-of-control ARL becomes larger than expected. In words, it results in a higher
false alarm rate and makes the shift in the process parameters more difficult to detect
than that in the case of independent observations. Besides, when traditional control
charts are applied to autocorrelated data, the traditional control limits are too tight
and thus produce unnecessary false alarms. A large number of false alarms cause

waste of costs and efforts for the unnecessary inspections in an in-control process.

Woodall and Faltin (1993) have suggested two strategies to deal with correlated
processes. They indicated that the correlation should be eliminated if possible.
However, since autocorrelation is often an inherent part of the processes and thus it
must be properly modeled and monitored. There are two most widely used methods
of treating autocorrelated processes. One is based on the residuals, while the other
is based on the original observations. The idea of the residual-based scheme is to
fit a time series model for the autocorrelated process. If the model is adequately
fitted, the resulting residuals may be assumed to be normally distributed with mean
zero and variance o2 in the absence of correlation. Therefore, the residuals can be
monitored by the traditional control chart techniques without any modification.
Wardell, Moskowitz and Plante (1994) compared the performance of Shewhart and
EWMA control charts under an ARMA(1,1) model. Runger (1995) applied the
residual-based technique to the CUSUM chart under the autoregressive (AR(p))
processes . Harris and Ross (1991), Lu and Reynolds (1999) and Montgomery and

Mastrangelo (1991) analyzed several control charts applied to residuals.

The second method mentioned is to monitor the process by the original obser-
vations with adjusted control limits. Vasilopoulos and Stamboulis (1978) introduced
a modified Shewhart chart for an AR(2) model. Zhang (1998) developed an EW-
MAST chart with modified control limits which depend on the correlated structure.
Reynolds and Lu (1997) drew a conclusion that charts using residuals from a fitted
time series model are not necessarily better than those based on the original obser-
vations with adjusted control limits unless the level of autocorrelation is quite high.

It is more satisfactory to use a chart based on the original observations rather than



on the residuals. The scheme based on the original observations has the advantage

that it is easier to understand and interpret for an operator.

VanBrackle and Reynolds (1997) used integral equation and Markov chain ap-
proaches to deal with the process modeled as AR(1) plus a random error. These
two approaches are often used to calculate the ARL of a control chart. The Markov
chain approach was first proposed by Brook and Evans (1972) to study the run
length properties of a CUSUM chart under the assumption of independent and
identically distributed (i.i.d.) observations. Yashchin (1993) pointed out that the
presence of serial correlation destroys the Markov property of the monitoring statis-
tic of the CUSUM scheme and the exact analysis becomes practically infeasible.
This problem can be overcome by using the finite Markov chain imbedding (FMCI)
approach introduced by Fu and Koutras (1994). In this thesis, our objective is to
study the properties of control charts including Shewhart, CUSUM and EWMA
charts based on the original observations by an unified FMCI approach for AR(1)
and AR(2) models.

The rest of this thesis is organized as follows. In chapter 2, we introduce the
idea of discretization and the method of FMCIL. The autoregressive models AR(1)
and AR(2) that are used to model the observations of the processes in the thesis
are also briefly discussed. Under these two models, we investigate the run length
properties of Shewhart control charts and Shewhart control charts with Western
Electric rules in Chapter 3. Further, a comprehensive study on the run length for
CUSUM and EWMA charts is given in Chapter 4. Finally, in Chapter 5, we compare
the performances of Shewhart and EWMA charts that we study in Chapter 3 and
Chapter 4. Numerical results are given and will be listed at the end of Chapter 3 to
Chapter 5. In addition, simulation results based on generating 10,000 run lengths

are also provided in the tables for each chart considered.



Chapter 2

Notations and Preliminaries

2.1 Finite Markov chain imbedding

Let {X;} be a sequence of observations of a random variable X (discrete or contin-
uous) which represents certain quality characteristic and let random variable S; be
a monitoring statistic for a control chart. We define the run length variable for a

control chart by
W = inf{t : S; exceeds the control limits}. (2.1)

Without loss of generality, we set the target value of process mean to be zero
throughout the thesis. Further, we denote the in-control and out-of-control ARLs

by ARLy and ARL;, respectively.

We briefly describe the basic idea of the Markov chain approach proposed by
Brook and Evans (1972) in the following. Suppose that a one-sided control chart is
used. For a discrete monitoring statistic which takes m + 1 values within the con-
trol limits, these values are treated as states of a Markov chain and all the values
that exceed the limits are incorporated into an absorbing state. For a continuous
monitoring statistic, the same idea is applied. The in-control area of a control chart
is discretized into m + 1 states and the state that exceeds the limits is treated as
an absorbing state. As stated in Chapter 1, when observations are serial correlated,
the Markov property for the monitoring statistics is destroyed. This problem can
be tackled by introducing the FMCI technique. Fu, Spiring and Xie (2002) and
Fu, Galit and Chang (2002) have developed an unified framework to find the ARLs
for several control charts under the assumptions of normality and independence for

observations. Their method includes two steps:



Step 1. Discretize the area of a one-sided (or two-sided) control chart into m + 2
(or 2m + 3) states as Brook and Evans (1972) did. Then a sequence of

discrete random variables (monitoring statistics) S;(m) can be obtained.

Step 2. Based on the monitoring statistics S;(m), one can construct a Markov
chain {Y;(m)} that has a finite state space Q and a transition matrix

M (m) of the form
M(m) = lN (m) | C(m) ] (2.2)

where C(m) is a column vector corresponding to the absorbing state.

Let W(m) denote the run-length random variable induced by the finite Markov
chain {Y;(m)}. Then the probability, mean and standard deviation (SD) of run
length can be obtained from the following results derived by Fu, Spiring and Xie
(2002).

Theorem 2.1 Given a positive integer m, we have
(i) PIW(m) =n] = mo(m)N""*(m)(I — N(m))17,
(ii) EW(m)] = mo(m)(I — N(m)) ‘17,
(iii) E[W?(m)] = mo(m)(I + N(m))(I — N(m))*17,
where wo(m) = (1,0,...,0) is the initial distribution with 1 corresponding to a

specified initial state, I is an identity matriz and 1" is the transpose of the row

vector 1= (1,...,1).

It has been shown that under mild conditions S;(m) — S; in distribution and
E[W*(m)] — E[W*], k = 1,2,..., as m — oo. Yashchin (1985) suggested that
it would be satisfactory to use m = 30. This methodology can be easily extended
to study the run-length properties for control charts in autocorrelated processes.
The key is to incorporate the correlations into the construction of the Markov chain

{Y;(m)} and settings of transition probabilities.



2.2 Process model assumptions

In this thesis, we assume that the underlying process has a AR(1) or AR(2) struc-

ture. These two models are briefly discussed in the successive sections.

2.2.1 First order autoregressive model

Suppose that the observations X;, t = 1,2, ..., are from an AR(1) process; that is,

X, satisfy the following relations:
Xt_M:¢(Xt—1_u)+5tat:172:"': (23)

where 1 is the process mean, ¢ is the autoregressive parameter (| ¢ |[< 1) and &, is
independent and normally distributed with mean zero and finite standard deviation
o.. Without loss of generality, we assume that 4 = 0 and 0. = 1. Furthermore, the
starting value X, in model (2.3) is assumed to be either (i) normal with mean zero
and variance # or (ii) zero. For convenience, we denote model (2.3) by AR'(1)

under assumption (i) and by AR"(1) under assumption (ii), respectively. From the

assumption of X in (i), we can deduce that the mean of X} is given by

E(X;) = E(@X;1+e) = ¢E(X;—1)+0 = ---

= ¢'E(X,) = 0,
and the variance of X, is given by

V(Xt) = V((bXt_l +5t) = ¢2V(Xt—1)+1 — ...

= V(@Xo) + 6"+ 41

_ ¢2t . 1 N 1— ¢2t
1—¢2  1-¢?
1
= —F. 2.4
e (2.4
fort =1,2,.... This results in a stationary AR(1) process; that is, X; ~ N (0, ﬁ)

for all ¢.



2.2.2 Second order autoregressive model

Suppose that the observations X;, t = 2,3, ..., are from an AR(2) process; that is,

X; satisfy the following relations:
Xt — M= ¢1(Xt—1 - ,LL) + ¢2(Xt—2 - ,LL) + €, = 2a 3; RS (25)

where p is the process mean, ¢; and ¢, are the autoregressive parameters that have

the following restrictions

¢1+¢2<1, ¢1—¢2<1, —1<¢2<1, (26)

and &; ~ i.i.d. N(0,1). In model (2.5), we consider two assumptions for the starting

values Xy and X;:

(i) Xy and X; are from a bivariate normal distribution with marginal mean 0,

marginal variance (1+¢2)(17¢;$?)(17¢27¢1) and covariance E(XyX;) = (ﬁ;ﬂ.

(ii) Xp is assumed to be zero and X and X; have a relation given by (2.4); that
iS, X1 = ¢X0 + &1 = €.

Again, we use the notations AR'(2) and AR"(2) to denote the model given by

(2.5) under assumptions (i) and (ii), respectively. It can be shown that assumption

(i) leads to a stationary AR(2) process; more specifically, X; ~ N (0, (1+¢2)(1_¢;$f)(1_¢2_¢1))

and the covariance of X; 1 and X; is E(X;_1X;) = (Ti):p_z) for all ¢ .



Chapter 3

Shewhart Control Charts for
Autocorrelated Processes

In this chapter, we follow the two steps described in Section 2.1 to study the run-
length properties of Shewhart control charts and Shewhart control charts with West-
ern Electric rules when observations are from AR(1) and AR(2) processes. All the

findings are new.

3.1 Average run lengths for AR(1) process

It is known that the monitoring statistic for a Shewhart control chart is the ob-
servation X, itself and the condition for signaling an alarm is that the present
observation exceeds some control limits; i.e. | X;| > h for some h > 0. Assume that

Xy, t=1,2,..., are from a AR'(1) process, that is,
X = ¢Xi1 + &, (3.1)

where ¢ is the autoregressive parameter, &; ~ i.i.d. N(0,1) and X; ~ N ((), #) for
all . To find the run-length distributions, we provide details for the discretization

and imbedding procedures in the following.
Step 1: Discretization

Given a positive integer m, each side of the control chart is discretized into m
states plus one state that exceeds the control limit (h or —h). States are assumed to
be equally spaced with a small distance A > 0 (usually A = m) Let D(X)

be the discretized random variable X in the following sense,

D(X)=iA, i =0,£1,...,+m,£(m + 1), (3.2)



We define the probabilities p; = P(D(X) = ¢A) as follows :

(i+0.5)A
pz':/ f(z)dz, i=0,%1,...,+m,
(i-0.5)A

= dz, and
Pt /[(m+1)_0_5]A f(x)dz, an

/[—(m—|—1)+0.5]A

P—(m+1) = f(z) dz. (3.3)

where f(x) is the density function of X.
Step 2: Imbedding

For simplicity, we denote D(X;) = iA as D(X;) = i. In the AR'(1) process,
we have assumed that the starting value Xg is from N (0, #) Thus, an out
of control signal could occurr at the stage of X, and hence this stage should be
taken into account when computing the ARL. For this purpose, it is reasonable

to introduce a dummy variable X_; and define an initial state D(X_;) = () with

P(D(X_1) =0) = 1. Now define a state space Q2 by
Q={0,-m,...,—1,0,1,...,m,a}. (3.4)

Note that the states +(m + 1) are combined into an absorbing state a.. Obviously,
card(2) = 2m+ 3. For t > —1, we define a Markov chain {Y;(m)} that takes values
on the state space 2 by

Yi(m) = D(Xy). (3-5)

It follows from (3.4) and (3.5) that the transition probabilities p;;, i, j € €2, for the

imbedded Markov chain {Y;(m)} can be specified as follows: for ¢ = 0, we have
(1)ifs=0and j =0,41,...,+m, then
pij = P(o(m)=j [Yoi(m)=1)
= P((j—05)A < X < (j +0.5)A),
(2) if i =0 and j = «, then
pij = PYo(m)=j|Y.(m)=1i)
= P(Xo> ((m+1)—05)A or Xg < (—(m+1) + 0.5)A)

= P(Xp > (m+0.5)A) + P(Xp < (—m — 0.5)A),



where Xy ~ N (0, #), and for ¢t > 1, we have

(3) if 4,7 =0,+1,...,+m, then

pij = PY(m)=7j|Yi1(m)=1)
= P((j—05)A <X, <(j+05)A | X, | =iA)
= P((j—05)A<¢X, 1+ < (j+05)A | X,y =iA)
= P((j —¢i—05)A) <& < (j— ¢i+0.5)A)
= O((j — ¢i +0.5)A) — B((j — ¢i — 0.5)A),

(4)ifi=0,%£1,...,+m and j = «, then

Yy(m) = a [ Yia(m) = i)

pij = P(
(Xi > ((m+1)=0.5)A or Xy < (=(m+1)+0.5)A] X3y =iA)
(
(

Il
e

= Per > (m+0.5—¢i)A or ey < (—m — 0.5 — ¢i)A)

= O((—m —0.5—¢i))A)+1—@((m+ 0.5 — ¢i)A),
(5)ifi=«and j =0,%1,...,+m, then
pij =0,
(6) if 4, = «, then
pij =1,

where ®(z) denotes the cumulative density function of the standard normal distri-
bution. Thus, the transition probability matrix M (m) = (p;;) can be obtained and
written in the form given by (2.2) and the exact probability, mean and standard

deviation of run length can be evaluated by Theorem 2.1.

Next, suppose an AR"(1) process is under consideration. In this case, the
procedures for the two steps above are almost the same. The only difference is
that we assume that the starting value Xj is at the initial state () with probability

one; i.e. P(Xy = @) = 1 and hence the transition probabilities p;; for i = @) and

10



j=0,%1,...,+m,q, are generated from the standard normal distribution N (0, 1).
Generally speaking, the ARL for a Shewhart control chart in an AR'(1) process is
a little bit smaller than that in an AR"(1) process. We provide a simple example

to make the method more transparent.

Example 3.1 Consider a Shewhart control chart with observations from the AR"(1)
process. Take h = 3 and m = 2 then A = 23—5 Following the discretization and
imbedding procedures, we can define a Markov chain {Y;(2)} taking values on the
state space 2 = {0, £1, £2, o} ( £3 are combined into the absorbing state «). The

submatrix IN(2) of the transition matrix M (2) is given by

b2 b Do 1 b2
P22 P-2-1 P-20 P-21 P-22
P-1,—2 P-1,-1 P-10 P-11 P-1,2
bPo,—2  Po,~1 Poo Poi Poz2
Pi,—2 P1,-1 Pio Pia P12
L DPo,—2 P21 P20 P21 P22

OO oo oo

where p;, @ = 0,41, 42, are generated from N (0, 1) and p;;’s are computed by the
equations derived in (3)-(6). With ¢ = 0.5, Table 3.1 shows the mean and standard
deviation of the run length at different levels of discretization (m). It is clear that

the numerical results are rather stable for m > 30.

In the above example, we took +3 to be the control limits. It can be seen
from Table 3.1 that these limits are too tight and thus result in a smaller in-control
ARL. In fact, they are only suitable for i.i.d. observations. When autocorrelation
is presented in the observations, the control limits should be adjusted to be +30,
where o2 = # In Table 3.2, we compare the ARLs using the control limit h = 3
with the ARLs using the control limit h = 30,. Clearly, the ARLy’s with h = 3
drop dramatically when the autoregressive parameter ¢ is getting larger. In this
situation, we will observe a large amount of false alarms in the control chart. On
the other hand, the use of the adjusted limit h = 30, does increase the values

of ARLy’s. This prevents from waste of costs for unnecessary inspections in the

11



process. In the rest of this chapter and the successive chapters, we shall use the

adjusted limit h = 30, in each chart considered.

Tables 3.3 and 3.4 give the ARLs for AR'(1) and AR"(1) processes with various
magnitudes of ¢ and shifts &. We see that the ARL;’s become larger when the

correlation gets higher. This reduces the performance of the control chart.

3.2 Average run lengths for AR(2) process

Assume first that the observations Xy, t = 2,3, ..., are from a AR'(2) process; that
is,
Xt =01 Xy 1+ 02Xy 2+ &y, (3.6)

where ¢; and ¢, are the autoregressive parameters and ¢; ~ iid. N(0,1) and

X, ~N (0, (1+¢2)(1_¢(’;$3(1_¢2_¢1)) for each t. We apply the methodology used in
the previous section to find the run-length distributions of a Shewhart control chart
for model (3.6).

Step 1: Discretization

The discretization procedure is the same as the procedure described in Section

3.1 except that the probabilities p; = P(D(X) =iA), i =0,+1,...,+m,+(m+1),

are determined by the normal distribution N (0, (1+¢2)(17(£;$3(17¢27¢1)).

Step 2: Imbedding

In model (3.6), we have assumed that the starting values Xy and X are from
a bivariate normal distribution and thus these two stages should be taken into ac-
count when computing the run-length distributions for the same reason stated in
Section 3.1. Therefore, two dummy variables X_; and X_5 are needed so that
the desired Markov chain can be constructed properly. Define an initial state
(D(X_5),D(X 1)) = (0,0) with P((D(X _2),D(X 1)) = (0,0)) = 1. According

to the structure of the AR'(2) process, we define a state space (2 as

Q = {(0,0),@,—m),...,(0,m),(—m,—m),...,(—=m,m), (—m +1,—m),

o (=m+1,m),...,(m,—m),...(m,m),al, (3.7)
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with (2m 4 1)(2m + 2) + 2 states in total. Note that states that include +(m + 1)

as one of coordinates are combined into an absorbing state . We define a Markov

chain {Y;(m)} that takes values on the state space 2 by

Yi(m) = [D(Xi-1), D(X)]. (3.8)

It follows from (3.7) and (3.8) that the transition probabilities from state (i;_o, ;1)

at time ¢t — 1 to state (i;_1,4;) at time ¢ for the imbedded Markov chain {Y;(m)} can

be specified as follows:

(1) if u=(0,0), v=(0,4y) and 79 = 0,+1, ..., +m, then

Puwv = P(YE)(m) =v ‘ Yfl(m) = U,)

where Xg ~ N (0, (1=¢2)

(1+¢2)(1—p2+¢1)(1—p2—¢1) ) )

(2) if u= (0,0) and v = @, then

Pw = P(o(m)=v]|Y.1(m)=u)
= P(Xo>(m+1-05)Aor Xg < (—m—1+0.5)A)

= P(Xy> (m+0.5)A) + P(X, < (—m — 0.5)A),

(3) ifu= (m,io), V= (io,’il) and ’io,il = 0,:|:1, .. .,:I:m, then

Pw = PXi(m)=v|Yo(m)=u)

= P(X1 = ZlA | XO = ioA),

where X;| Xo = i0A ~ N(é(ipA), (1 — ¢?)c?),

(4) if u = (0,4), v =a and 59 = 0, %1, ..., +m, then

puv

P(Yi(m) =v | Yo(m) = u)
P(X; > (m+0.5)A or X; < (—m — 0.5)A | Xy = ipA)

13



(5) if u= (it_g,’it_l), v = (it—l,it) and ’it_g,it_1,’it = 0, :I:l, PPN :I:m, for t 2 2, then

Puw = PYi(m)=v|Yi1(m)=u)
= P((iy— 0.5)A < X, < (i + 0.5)A | Xpoq = 41D, Xpo = ip_sA)
= P((is— 0.5)A < ¢ Xy1 + o Xy_o + &1 < (iy + 0.5)A |
Xio1 = i1, Xyg = iy_oA)
= P((iy— 0.5 — 1is_1 — doiz2)A < &y < (i + 0.5 — priy_1 — Poiy_2)A)

= O((ir + 0.5 — P11y 1 — Poir 2)A) — P((i — 0.5 — Prip 1 — Paiy 2)A),

where @ is the cumulative density function of the standard normal distribution,

(6) if u = (i4—2,%4-1), v = and 4y_9,4;_1 = 0, £1,...,£tm, for ¢t > 2, then

Pw = PYi(m)=v|Yi1(m)=u)

= P(X;>(m+1-05)Ao0r X; < (=(m+1)+0.5)A |
Xio1 =014, Xi—g = it2A)

= P(o1Xio1+ ¢ Xi 2+ 60 > (m+0.5)A or ¢1.X; 1 + ¢2Xy o +
e < (=m — 0.5)A | X1 = i 1A, Xi o =iy oA)

= Peg > (m+0.5— @10 1 — doiy o)A or
gt < (—m — 0.5 — P1ip_1 — ¢oiy_o)A)

= O((=m — 0.5 — Bris_1 — dis_2)A) + 1

—®((m+ 0.5 — P1it—1 — Poir—2)A),

(7) if v = (44_1,%) and 4;_1,%; = 0, %1, ..., £m, for ¢ > 1, then p,, =0,

(8) Paa = 1.

Next, suppose the observations Xy, ¢t = 2,3,..., are from an AR"(2) process.
Recall that the assumptions for this process are that Xy = 0 and X, and X; follow
an AR(1) model; i.e. X; =¢; ~ N(0,1). According to these assumptions, we only

need a dummy variable X_; to construct the state space for the imbedded Markov

chain Y;(m). Define D(X_;) = @ with probability one. Then the state space Q of

14



the imbedded Markov chain Y;(m) for AR"(2) process is defined by

Q = {(,0),(-m,—m),...,(—m,m),(—m+1,—m),...,(—m +1,m),

ey (my—m), ... (m,m), al. (3.9)

Example 3.2 Consider a Shewhart control chart in the AR"(2) process. We choose
the control limit h = 30, and m = 1. Then the submatrix IN(1) of the transition
matrix M (1) is given by

(@;0) (_15_1) (—1,0) (_151) (Oa_l) (050) (Oa 1) (]-a_]-) (150) (171)

0 0 0 0 P-1 Po P 0 0 0
0 p_1,—1,-1 P-1,-10 P-1,-11 0 0 0 0 0
0 0 0 0 P-1,0-1 P-1,00 P-1,0,1 0 0 0
0 0 0 0 0 0 0 P—1,1,-1 P-11,0 DP-1,1,1
0 po—1,-1 DPo—10 Po,1,1 0 0 0 0 0
0 0 0 0 Po,o,—-1 P00  Po,0,1 0 0 0 ’
0 0 0 0 0 0 0 Do,1,—1 Do,1,0 Do,1,1
0 p1,-1,-1 P1,-10  DP1,-11 0 0 0 0 0
0 0 0 0 P1,0,—1 P00 P01 0 0 0
K 0 0 0 0 0 0 P11,-1 P10 Prig |

where the probabilities p;, ,;, , . denote the transition probabilities pg,_, i, _),(i_1,i)

which can be obtained from (1)—(6).

With the various values of ¢;, ¢o and &, Tables 3.5 and 3.6 give numerical
results for the ARLs in the AR"(2) process and results for the AR'(2) process are
provided in Tables 3.7 and 3.8.

3.3 Average run lengths for AR(1) process with Western
Electric rules

It is known that the Shewhart control chart is insensitive to small shifts in the
process parameters. To enhance the ability for the chart to detect small shifts more
quickly, one way is to add sensitive rules in the chart. Several frequently used rules

that were suggested by the Western Electric Company (1956) are:

Rule 1 One or more points fall outside the three sigma control limits;
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Rule 2 Two of three consecutive points fall outside the two-sigma warning limits;
Rule 3 Four of five consecutive points fall beyond the 1-sigma limits;

Rule 4 Eight points in a row fall on one side of the center line.

The above rules are always referred to runs rules. In the sequel, a control chart
that uses several rules simultaneously is referred to a compound control chart. It
should be noted that Rule 1 is included in all compound control charts. Also note
that those rules can only be applied to one side of the center line. For example, if
there are two consecutive points, one is plotted above the upper warning limit and
the other is plotted below the lower warning limit, then Rule 2 is not applicable
under this situation. In the successive sections, we study run-length properties for
compound control charts that use two rules simultaneously in an AR(1) process.
For convenience, we use the notation R;; to denote the combinations of Rule 1 and
Rule 7 for 4 = 2,3,4. We shall demonstrate that the discretization and imbedding

procedures can be easily applied to these charts.

3.3.1 Compound control charts R
Assume first that the observations are from an AR'(1) process.
Step 1: Discretization

We have seen how the procedure of discretization works in Section 3.1. Ac-

cording to Rule 2, the chart is divided into four regions, say r1, r9, r3 and 74, by the

control limits (+h) and the warming limits (+h, = £m,A where m,, = w)
For t > 0, we define
r1 if —hy < D(X}) < Ay,
) e if hy < D(Xy) < h,
R(X,) = ry if —h < D(X}) < —hy, (3.10)

ry  otherwise.

An illustration for these regions is shown in Figure 3.1.

Step 2: Imbedding
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Figure 3.1: The regions based on the chart Ris.

Similar to the Step 2 in Section 3.2, we introduce two dummy variables X _;
and X_» and define R(X_;) = R(X_3) = ) with P(R(X_;) = R(X_3) = 0) = 1.
We define a state space 2 by

Q = {(0,0),(@,-—m),...,(0,m),(r,—m),...,(r,m),(re, —m), ..., (ro,my — 1),

(r3, =y +1),..., (r3,m), a}. (3.11)

with card(Q2) = 6m + 2m,, + 3. Note that the states are viewed as the absorbing
state « if one of their components includes r4 or =(m + 1). Base on the rules, we

define a Markov chain {Y;(m; Ri2)} for t > —1 on the state space ) as
Yi(m; Ri2) = [R(X¢—1), D(X3)]. (3.12)

The imbedded Markov chain does not move into the absorbing state o at time ¢ + 1

if one of the following conditions holds:
(1) —hy < D(Xi11) < Ay,
(2) h’w S D(Xt+1) < h,, R(thl) = (Z) and R(Xt) = @ or r; or rs,
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(3) =h < D(Xy41) < —hy, R(X;_1) =0 and R(X,;) =0 or r; or 73,
(4) hy < D(X441) < h, R(X;_1) =7 and R(X;) =7 or r3,

(5) hy < D(Xy11) < h and R(X;_1) = R(X}) = 73,

(6) —h < D(X441) < —hy, R(X;_1) =7 and R(X;) =7 or 3,

(7) —h < D(Xi31) < —hu and R(Xi_1) = R(X,) = 13-

It follows from (3.11) and (3.12) that the transition probabilities of the imbedded
Markov chain from state (z,) to state (y,j) can be determined by the following

equations: if conditions (1)—(7) hold,

P(Yi1(m; Riz) = [R(Xy), D(Xp41)] | Yi(m; Rag) = [R(X; 1), D(X3)])

= P(Y;:+1(m; R12) = (y,j) ‘ Y;(m, Rl?) = (a;,z))

_ { P((j —0.5)A < Xy < (j+0.5)A) if t=—1,

P((j—¢i—05)A<e < (j—¢i+05)A) if t>0. (3.13)

where Xy ~ N (0, #) and g, ~ N (0,1). Since the transition probabilities of each
row add to 1, the probability of moving into the absorbing state o can be obtain by

subtracting all the other probabilities in the row from 1: i.e.,

P(Yi41(m; Rig) = a | Yi(m; Ryg) = (1))

=1- > PYu(mRi) = (y,5) | Vi = (2,1)). (3.14)
(y.9)e\{a}

For the case of AR"(1) model, we only need to define a variable R(X_;) = ()
with P = (R(X_;) = () = 1. With a simple modification in (3.11), the state space

2 is given by

Q = {(0,0),(ry,—m),...,(r,m), (re, —=m), ..., (ro,my — 1),

(rg, —my +1),...,(r3,m)}. (3.15)
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Example 3.3 Consider a compound control chart Ry in the AR"(1) process. Sup-
pose we take m=2, then the state space of the imbedded Markov chain {Y;(2; R12)}

is given by

Q= {(@,0), (7‘1, —2), ceey (7'1,2), (7'2, —2), ceey (7‘2, ].), (7‘3, —1), ceey (7'3,2)}.

The submatrix IN (2) of the transition matrix M (2) is shown in the next page. Some

numerical results of the ARLs are listed in Table 3.9.

3.3.2 Compound control charts R;3
Assume that the observations are from an AR'(1) process.
Step 1: Discretization

Similar to Section 3.3.1, we divide the chart into four regions, say r1, r9, 73 and

ry according to Rule 3. Note that the warning limits here are +h,, = £m,,A where

1
:(m;r)(

My see Figure 3.2 for illustration). Define

r1 if —hy < D(X}) < hy,
ro if hy, < D(X}) < h,

ry if —h < D(X}) < —hy,
ry  otherwise.

R(X,) = (3.16)

Step 2: Imbedding
We introduce four dummy variable X 1, X o, X 3, X 4 and define R(X_4) =
R(X_3) = R(X_3) = R(X_1) = () with probability one. Define a state space Q by
Q = {(@, 0: (Z)) 0), (ma wa (Z)a Z.l)a (wa @, Rl: 7:2)) ((Z), RQa R3a 7:3)5
(R4, Rs, Re, i), } -
where Rl, RQ, R3, R4, Rg), Rs =T1,T9, T3 and il, ig, 7;3, 7:4 = —m,...,m. Note that
states are incorporated into an absorbing state « if one of the first three components

includes 74 or the last component includes +(m + 1). Based on the Rules 1 and 3,

we define a Markov chain {Y;(m; R;3)} on the state space Q as, for ¢t > —1,
Yi(m; Ri3) = [R(Xi-3), R(Xi-2), R(Xi 1), D(Xy)].
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h, =(m+1)n/3

0

—h =—(m+1)A/3
w

Figure 3.2: The regions based on the chart R;s.

To determine the transition probabilities, a set of conditions that the imbedded
chain {Y;(m; R13)} does not move to « can be easily specified in a similar way as
in Section 3.3.1. Finally, for the case of AR"(1) process, all the procedures are the
same as discussed in Section 3.3.1. Some numerical results are presented in Table

3.10.

3.3.3 Compound control charts R4
Step 1: Discretization

According to Rule 4, the chart can be divided into three regions (see Figure 3.3).

We define

rtif 0< D(Xy) < h,
r if —h < D(Xt) < 0.

Step 2: Imbedding
We define a variable C'(X;) to be the number of consecutive points that fall

into the same regions r* or r~—. Then C(X;) could take values on 0,1,...,8. For

AR'(1) process, a dummy variable X ; is introduced and we define C'(X ;) = ()
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Figure 3.3: The regions based on Rule 4.

with probability one. Define a state space €2 by

Q = {(07 0)7 (07 0)7 (L _m)i Tt (17 _1)7 (17 1)7 SRR (17m)7 (2: _m): SRR (27 _1)7
(2,1),...,(2,m), ..., (7,—m),..., (7,-1),(7,1),...,(7,m), a} (3.18)
with 14m + 3 states in total. Note that states that include 8 in the first component

or £(m + 1) in the second component are combined into an absorbing state «. For

t > —1, we define a Markov chain {Y;(m; R14)} on the state space Q2 by
Yi(m; Ri4) = [C(Xy), D(X})]. (3.19)

The transition probabilities can be specified by following the same procedure in

Section 3.1.

0

Remark 3.1 For a continuous monitoring statistic, the region r* can be ignored

since P(D(X;) = 0) = P(—0.5A < X; < 0.5A) — 0 as m — oo. Thus we can

eliminate the state (0,0) and modify the probabilities p; and p_; in (3.3) as follows:
1.5A
p=[" f@)de,

22



(3.20)

0

If the monitoring statistic is discrete, then the region r” is needed and the state

(0,0) should be retained.

Example 3.4 Consider a compound control chart R;4 in an AR"(1) process. Take

m = 1, then the state space is given by
0 ={(0,9),(0,0), (1,-1),(1,0),(1,1),...,(7,-1),(7,0), (7, 1), a}.

The submatrix N (1) of M (1) is given in the next page. Table 3.11 gives some

numerical results for the ARLs with various values of ¢ and &.
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Tables

Table 3.1: Convergence of means and standard deviations of W (m) in Example 3.1
and Example 3.2 for various values of m.

h=3 h =30,

m ARL SD ARL SD
3 109.83 108.43 338.58 337.57
12 118.88 117.49 394.41 393.13
30 119.29 11791 396.98 395.80
100 119.36 11797 397.42 396.24
300 119.36 117.98 397.46 396.28
1000 119.36 117.98 397.46 396.28

Table 3.2: Comparisons of the in-control ARLs for h = 3 and h = 30, in the AR"(1)
process.

h=3 h =30,
b ARL SD ARL SD
0 370.40 369.90 370.40 369.90
0.1 353.14 352.59  370.95 370.40
0.2 306.33 305.65 372.85 372.16
0.3 24258 241.70 376.81 375.90
0.4 176.51 175.39  384.21 383.00
0.5 119.36 117.98  397.46 395.86
0.6 76.35 7470 421.16 419.03
0.7 4739 4545  465.54 462.59
0.8 2948 2727 559.84 555.34
0.9 19.02 16.59  842.04 833.07
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Table 3.3: ARLs for AR'(1) process with various combinations of ¢ and &.

¢ £ ARL simulation o & ARL simulation
0 0 370.40 371.24 0.5 0 396.28 398.01
0.5 155.22 157.55 0.5 176.29 175.11
1 43.89 44.43 1 54.35 54.16
2 6.30 6.38 2 8.89 8.95
3 2.00 1.98 3 2.57 2.59
0.1 0 370.90 370.02 0.6 0 419.37 422.34
0.5 156.26 158.25 0.5 191.23 190.85
1 44.64 44.42 1 60.65 61.15
2 6.57 6.63 2 10.18 10.14
3 2.07 2.08 3 2.84 2.82
0.2 0 372.65 372.96 0.7 0 462.78 460.50
0.5 158.26 158.12 0.5 217.56 217.63
1 45.83 45.92 1 71.31 71.71
2 6.93 6.89 2 12.27 12.07
3 2.15 2.18 3 3.25 3.23
0.3 0 376.38 379.23 0.8 0 555.16 551.18
0.5 161.67 162.27 0.5 271.11 271.66
1 47.63 48.42 1 92.39 91.80
2 7.39 7.36 2 16.30 16.18
3 2.26 2.24 3 4.05 4.05
04 0 383.46 385.62 09 0 831.67 827.44
0.5 167.26 168.90 0.5 427.19 429.31
1 50.31 49.88 1 152.99 150.80
2 8.02 8.10 2 27.70 27.91
3 2.39 2.40 3 6.26 6.12
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Table 3.4: ARLs for AR"(1) process with various combinations of ¢ and ¢&.

o £ ARL simulation o & ARL simulation
0 0 370.40 370.98 0.5 0 397.46 396.77
0.5 155.22 157.94 0.5 177.27 177.95
1 43.89 43.79 1 55.07 54.92
2 6.30 6.37 2 9.14 9.05
3 2.00 2.00 3 2.54 2.56
0.1 0 370.95 371.45 06 0 421.16 419.37
0.5 156.30 156.55 0.5 192.75 194.98
1 44.66 45.09 1 61.82 62.22
2 6.58 6.65 2 10.60 10.68
3 2.07 2.08 3 2.75 2.75
02 0 372.85 374.65 0.7 0 465.54 464.78
0.5 158.40 158.18 0.5 219.95 217.22
1 45.93 45.77 1 73.19 72.65
2 6.96 6.88 2 12.99 13.15
3 2.15 2.18 3 3.06 3.05
03 0 376.81  375.3812 0.8 0 559.84  555.1582
0.5 162.00 161.73 0.5 275.19 279.34
1 47.86 48.55 1 95.65 95.96
2 747 7.39 2 17.62 17.70
3 2.25 2.28 3 3.59 3.52
04 0 384.20 386.22 09 0 842.04 835.67
0.5 167.86 168.28 0.5 436.26 438.18
1 50.74 50.33 1 160.27 161.24
2 8.16 8.09 2 30.73 30.69
3 2.38 2.34 3 4.76 4.77
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Table 3.5: ARLs for AR"(2) process with selected values of ¢1, ¢ and &.

o1 P ¢ ARL simulation o1 P ¢ ARL simulation
0 0 0 370.40 370.98 02 0 0 372.78 374.99
0.5 155.22 155.35 0.5 158.39 159.49

1 43.89 43.47 1 4592 46.09

2 6.30 6.22 2 6.96 6.96

3 2.00 2.00 3 2.15 2.13

0.2 0 37297 376.49 02 0 378.87 380.06
0.5 158.77 157.71 0.5 165.60 164.66

1 46.43 46.30 1 50.57 50.41

2 7.40 7.48 2 8.66 8.58

3 2.35 2.31 3 2.64 2.64

04 0 384.65 383.58 04 0 403.44 400.77
0.5 168.81 171.24 0.5 186.42 183.88

1 51.93 52.21 1 61.67 61.66

2 9.13 9.14 2 11.97 12.14

3 2.81 2.81 3 3.45 3.40

0.6 0 421.96 419.40 0.5 0 436.11 515.19
0.5 194.63 193.64 0.5 211.96 262.07

1 64.12 64.01 1 7594 97.53

2 12.40 12.31 2 19.28 22.14

3 3.48 3.52 3 9.20 5.56

0.8 0 560.66 566.37 06 0 511.82 515.19
0.5 279.11 279.52 0.5 261.90 262.07

1 100.80 101.67 1 97.80 97.53

2 21.60 21.26 2 22.01 22.14

3 4.91 4.90 3 5.52 5.55
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Table 3.6: Continuation of Table 3.5.

01 P9 ¢ ARL simulation o1 P9 ¢ ARL simulation
04 0 0 383.94 381.27 06 0 0 420.33 417.66
0.5 167.78 167.16 0.5 192.51 195.31

1 50.73 50.88 1 61.78 62.11

2 8.16 8.24 2 10.60 10.47

3 2.38 2.38 3 2.75 2.80

0.2 0 409.48 417.16 0.1 0 457.40 460.60
0.5 188.86 187.61 0.5 217.88 221.07

1 61.84 61.2843 1 73.64 73.64

2 1147 11.41 2 13.75 13.54

3 3.18 3.18 3 3.39 3.39

04 0 529.53 530.80 0.2 0 544.59 542.03
0.5 269.74 266.28 0.5 273.43 276.17

1 99.44 99.73 1 98.37 96.91

2 21.58 21.47 2 20.08 20.23

3 5.26 5.18 3 4.58 4.53

0.5 0 816.22 821.60 0.3 0 834.03 831.31
0.5 447.30 449.20 0.5 448.65 454.45

1 178.19 176.93 1 173.97 174.41

2 42.82 42.49 2 39.34 39.13

3 9.23 9.11 3 7.90 7.87
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Table 3.7: ARLs for AR'(2) process with selected values of ¢;, ¢ and &.

o1 P ¢ ARL simulation o1 P ¢ ARL simulation
0 0 0 370.40 371.20 02 0 0 372.65 369.97
0.5 155.22 156.03 0.5 158.26 160.76

1 43.89 43.54 1 45.83 45.72

2 6.30 6.21 2 6.93 6.92

3 2.00 2.00 3 2.15 2.17

0.2 0 372.64 372.42 0.2 0 378.23 379.13
0.5 158.23 156.66 0.5 164.69 166.56

1 45.78 46.04 1 49.56 49.05

2 6.82 6.94 2 7.89 7.91

3 2.08 2.08 3 2.32 2.32

04 0 38341 381.46 04 0 401.48 397.82
0.5 167.16 166.25 0.5 183.78 182.93

1 50.13 50.65 1 58.82 57.96

2 7.71 7.62 2 9.86 9.75

3 2.19 2.19 3 2.65 2.68

06 0 419.17 415.13 0.5 0 43297 429.73
0.5 190.91 189.43 0.5 206.17 208.51

1 60.13 59.44 1 68.83 69.01

2 9.44 9.61 2  11.85 11.75

3 2.39 2.39 3 2.99 3.00

0.8 0 554.32 549.72 06 0 506.47 494.44
0.5 269.92 269.89 0.5 254.58 252.95

1 90.69 91.24 1 89.68 88.90

2 14.25 14.41 2 15.89 15.77

3 2.93 2.90 3 3.68 3.66
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Table 3.8: Continuation of Table 3.7.

01 o ¢ ARL simulation 01 O & ARL simulation
04 0 0 383.44 385.12 0.6 0 0 419.33 417.74
0.5 167.25 167.77 0.5 191.22 189.91

1 50.31 49.74 1 60.65 61.28

2 8.02 8.06 2 10.18 10.14

3 2.39 2.37 3 2.84 2.85

0.2 0 407.94 405.53 0.1 0 455.56 451.66
0.5 186.87 188.49 0.5 215.38 213.85

1 59.80 60.77 1 71.15 71.46

2 10.13 10.18 2 12.34 12.50

3 2.78 2.79 3 3.24 3.27

04 0 524.96 419.00 0.2 0 541.2812 547.48
0.5 263.56 265.45 0.5 268.67 269.71

1 9273 91.72 1 93.32 93.14

2 16.67 16.72 2 16.70 16.47

3 3.97 3.85 3 4.07 4.05

0.5 0 807.43 810.98 0.3 0 828.27 834.77
0.5 433.77 431.85 0.5 438.08 440.57

1 162.69 164.36 1 161.75 161.70

2 30.162 29.46 2 29.84 29.17

3 6.46 6.40 3 6.54 6.49
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Table 3.9: ARLs for the compound control chart R, in the AR"(1) process.

o & ARL simulation o1 & ARL simulation
0 0 225.08 224.83 0.5 0 113.96 115.01
0.5  77.59 77.44 0.5 56.90 56.22

1 19.98 19.95 1 20.86 20.64

2 3.64 3.73 2 4.73 4.91

3 1.68 1.80 3 1.84 1.98

0.1 0 200.71 200.01 06 0 102.26 102.68
0.5  72.50 73.66 0.5 55.84 56.39

1 19.77 19.93 1 22.14 22.40

2 3.78 3.93 2 5.15 5.41

3 1.70 1.81 3 1.87 2.06

0.2 0 174.76 173.29 0.7 0 9570 96.88
0.5 67.48 66.76 0.5 57.05 57.30

1 19.69 19.82 1 24.48 24.68

2 3.95 4.11 2 5.74 5.97

3 1.74 1.85 3 1.89 2.08

03 0 150.65 152.07 0.8 0 97.05 97.70
0.5 63.02 62.98 0.5 63.03 63.01

1 19.80 19.56 1 29.27 29.18

2 4.16 4.36 2 6.66 6.95

3 1.77 1.88 3 1.87 2.10

04 0 130.17 131.65 09 0 121.60 122.20
0.5 59.41 58.52 0.5 85.95 85.77

1 20.15 20.25 1 43.26 43.11

2 4.41 4.56 2 8.60 8.91

3 1.81 1.95 3 1.72 2.06
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Table 3.10: ARLs for the compound control chart Ry in the AR"(1) process.

0 €& ARL simulation ¢1 & ARL simulation
0 0 166.09 165.59 0.5 0 46.99 48.95
0.5 46.27 46.44 0.5 26.21 27.37
1 12.68 12.63 1 11.89 12.32
2 3.68 3.69 2 4.26 4.25
3 1.88 1.90 3 2.09 2.11
0.1 0 130.14 131.43 06 0 37.65 38.74
0.5 40.90 41.76 0.5 23.80 25.10
1 12.43 12.51 1 11.88 12.36
2 3.76 3.78 2 4.42 4.43
3 1.92 1.92 3 2.13 2.13
0.2 0 100.64 102.59 0.7 0 31.32 32.55
0.5 36.36 37.00 0.5 22.00 23.45
1 12.23 12.39 1 11.99 12.54
2 3.87 3.86 2 4.59 4.63
3 1.96 1.96 3 2.17 2.17
03 0 77.51 78.11 0.8 0 27.95 29.26
0.5 3247 33.18 0.5 21.29 22.56
1 12.08 12.35 1 12.39 13.08
2 3.98 3.99 2 4.73 4.79
3 2.00 2.02 3 2.19 2.18
04 0 59.97 62.11 09 0 29.72 30.35
0.5 29.11 30.24 0.5 23.69 25.38
1 11.96 12.09 1 13.81 14.64
2 4.12 4.15 2 4.72 4.76
3 2.05 2.02 3 2.18 2.16
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Table 3.11: ARLs for the compound control chart R4 in the AR"(1) process.

0 €& ARL simulation ¢1 & ARL simulation
0 0 152.73 154.38 0.5 0 40.04 39.42
0.5 44.28 44.82 0.5 25.27 25.29
1 14.58 14.57 1 13.37 13.41
2 4.89 491 2 5.80 5.82
3 1.99 2.01 3 2.43 2.45
0.1 0 120.70 122.58 06 0 30.16 30.34
0.5 40.35 40.44 0.5 21.82 21.79
1 14.41 14.31 1 1299 13.12
2 5.00 4.99 2 6.09 6.12
3 2.06 2.07 3 2.56 2.54
0.2 0 93.24 94.29 0.7 0 2296 22.87
0.5 36.44 36.30 0.5 18.58 18.54
1 14.21 14.13 1 12.49 12.58
2 5.15 5.14 2 6.44 6.43
3 2.13 2.12 3 2.70 2.68
03 0 70.86 71.02 0.8 0 17.85 17.82
0.5 32.60 32.62 0.5 15.63 15.71
1 13.96 13.90 1 11.75 11.77
2 5.33 5.36 2 6.85 6.83
3 2.22 2.20 3 2.85 2.83
04 0 53.35 52.90 09 0 14.38 14.42
0.5 28.87 29.15 0.5 13.05 13.04
1 13.69 13.63 1 10.55 10.59
2 5.54 5.56 2 7.32 7.35
3 2.31 2.29 3 3.00 3.01
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Chapter 4

CUSUM and EWMA Control Charts for
Autocorrelated Processes

In this chapter, we investigate the run-length properties for the CUSUM and EWMA
control charts and enhancement of these charts including combining Shewhart chart

with CUSUM and EWMA charts when observations are from AR(1) and AR(2)
processes. In addition, the fast initial response (FIR) feature for the CUSUM chart

is also discussed.

4.1 One-sided CUSUM control charts
4.1.1 Average run lengths for AR(1) process

CUSUM control chart was first introduced by Page (1954). It is useful in detecting
small shifts in the process mean. For a two-sided CUSUM chart, the monitoring

statistics are given by

SV = max{0,S7, + X; — (uo + k)}, (4.1)
St = max{0,SF, — X; + (o — &)}, (4.2)
for t = 1,2,..., where the starting value SY(S¥) is set to be the target value and

the parameter k is called a reference value. The two monitoring statistics S/ and
S} are only used for detecting the upward and downward shifts, respectively. The
chart produces an out of control signal if SY or SI' > h for some h > 0. Here, we
only discuss the upper-sided CUSUM control chart.

Step 1: Discretization

Let X; = X; — k, then (4.1) can be written as
SY = max{0, S, + X;}. (4.3)
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We discretize X into a discrete random variable (denoted by D(X])) that takes
values on {—m, ..., m~+1}. This results in a discrete monitoring statistic D(SY) for
SV and D(SY) =i fori=0,...,m+ 1. Define the probabilities p; = P(D(X]) = i)

as follows: fori = —-m+1,...,m,

(i40.5)A+k
pi=/ f(z) dz, i=0,£1,...,£m,
(i—0.5)A+k

m = - d s d
Pru+1 /[(m+1)—0.5]A+kf(x) © an

(-=m+0.5)
o= ) (14

—co
where f(z) is the density function of X. Notice that the discretized random variable
D(X]) does not take the value —(m + 1) since it will not produce any out of control
signal for the chart.

Step 2: Imbedding

Since the starting value X is assumed to be from N (0, #) and hence it
is reasonable to define a dummy variable D(X' ;) = @) with probability one. This
implies that P(D(SY;) = 0) = 1. Define a state space as

Q = {(®,0),(0,-m),...,(0,m),..., (5 —-m),...,(5,m),...,(m,—m),...,
(m,m), a}. (4.5)

States that includes m + 1 are combined into an absorbing state .. Based on (4.3),

we define a Markov chain {Y;(m)} that takes values on the state space 2 by
Yi(m) = [D(S/), D(X])]. (4.6)

Note that the number of states in €2 can be reduced. To see this, suppose that
D(SY) = 0 and D(SY,) =i, for i = 0,1,...,m, then D(X}) can only take values
onj, j=-m,—m+1,...,0, according to (4.3). Hence states (0,1),...,(0,m) can
be eliminated. In general, if S; = i then D(X]) can only take values on j, j =

—m +1,...,1. After reduction, the state space €2 is given by

Q = {(0,0),(0,-m),...,(0,0),...,(E—-m+1),...,(4,1),...,(m,0),...,

(m,m), a}. (4.7)
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To find the transition probability p,, from a state u = (is,7,) to a state v =
(Js» jz), the following condition
Js = max{0,is + j } (4.8)

must be satisfied according to (4.3) and (4.6). From (4.7) and (4.8), the transition
probabilities for the imbedded Markov chain {Y;(m)} can be specified as follows:

for t = 0, we have
(1) if j, = —m+1,...,m and iy, i, = 0, then
Pw = PXo(m) = (s, jz) | Yo1(m) = (0,0))
= P((j. — 0.5)A < Xj < (4, +0.5)Q)

= P((jo —0.5)A+ k < X < (j, + 0.5)A + k),
(2) if ]:C = —m and is; Zac = @7 then

Pw = PYo(m) = (Js, jz) | Yoa(m) = (0,0))
= P(X} < (—m+0.5)A)

)

(Xo < (—m + 0.5)A + k),

(3) if v = « and 44,4, = (), then
Pw = PYo(m)=a)|Y_1(m)=(0,0)
= P(X{>((m+1)—0.5)A)
= P(Xo> (m+0.5)A+k),
where () + 7 = ¢ by convention and Xy ~ N (O, #), and for t > 1, we have

(4) if iy = —m,...,mand j, = —m +1,...,m, then

Pw = PYi(m) = (s, Jz) | Yicr(m) = (s, 4z))
= P((j» — 0.5)A < X| < (jo + 0.5)A | X;_; =i,A)
= P((jo—05)A+E<X; < (Jo +05)A+ k| X;y = iA+ k)
= P((js = 05)A+k <¢pXy1 +& < (o +0.5)A + k| Xymr = iz A + k)
= P((jo — ¢iz — 0.5)A + (1 = @)k < &y < (Jr — g + 0.5)A + (1 — 9)k),
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(5) if iy = —m, ..., m and j, = —m, then

Puv = P(Y;(m) (Jsa]w) ‘ Y;f—l(m) = (ZSule))
= P(X!<(-m+05)A | XI_, =i,A)
= PX;<(—m+05)A+k | X4 1 =i, A+ k)
= P(d)Xt 1+Et ( m+05)A+k|Xt_1:Z$A+k)
— P(e, < (=m+0.5 — ¢in)A + (1 — §)k),
(6) if iy = —m,...,m and j = «, then
pw = PYim)=(m+1,m+1)|[Y,1(m)= (s i)

|
B,

X!> (m+1-05)A | XI_, =i,A)

|
B,

|
B,

(

(

(Xe > (m+05)A+k | Xim1 =i, A+ k)

(X1 +e>(m+05)A+k | Xioy = i,A + k)
(et

= Pey > (m+0.5 — ¢iy) A+ (1 — 9)k),
(M ifu=a, j, =0,£1,...,+m and j; = 0,...,m, then
Puw = 0,

(8) if u = o and v = «, then

Puww = 1:

where ® is the cumulative density function of the standard normal distribution. The

transition matrix M (m) for Y;(m) can be obtained and written in the form given

by (2.2) and the exact probability, mean and standard deviation of run length can

be calculated by Theorem 2.1.

Next, we consider the AR"(1) process. In this case, the starting value X, is

assumed to be zero and this implies that S{ = 0 with P(Sy = 0) = 1. The state

space and transition probabilities can be constructed in a similar fashion as the case

of AR'(1) process.
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The performance of a one-side CUSUM control chart always depends on the
choices of the parameters A and k. For appropriate choices of parameters, we often
take h = 50, and k = %5 where £ = p10, is the shift from 0 to ;. For example, we

set k to be %aw and i% if we would like to detect 1o, and %Jw shifts more quickly.

In Tables 4.1 and 4.2, we give some numerical results of the ARLs for an upper-
sided CUSUM control chart in the AR'(1) and AR"(1) processes, respectively. For
AR'(1) process, we see that with ¢ = 0 the in-control ARL is 930.32 and the out-
of-control ARL for one-sigma shift is 10.38. Further, with ¢ = 0.9 these two values
are ARLy = 73.40 and ARL; = 16.72, respectively. We can conclude that high
correlation causes violent reduction of the values of ARLy and increase the values

of ARL; so that it is more difficult to detect a shift for the chart.

4.1.2 Average run lengths for AR(2) process

This section will investigate the run-length properties of an one-sided CUSUM
control chart when the observations of process are modeled as an AR'(2) process.
The two steps are shown in the following.

Step 1 : Discretization

This step is completely the same as the procedure described in the previ-
ous section except that the probabilities in Equations (4.4) are generated from
(1=¢2) ; 1
N (O, (1+¢2)(17¢2+¢21)(17¢27¢1) instead of N (0, 17&)
Step 2: Imbedding

We introduce two dummy variables SY; and SY, and define D(SY;) = D(SY,) =
# with probability one so that this stage of S can be taken into account when

computing the ARL. Now define a state space 2 by

Q = {(0,0,0),(0,0,—m),...,(0,0,0),...,(%0,—-m+1),...,(:0,1),

ey (m,0,0), ..., (m,0,m), (i, 4, k), a}. (4.9)

where: =0,1,...,m+1, j=—-m,—-m~+1,...,mm+1,and k =4,:+1,..., —m+i.

Note that states that include m + 1 as one of the coordinates are combined into the
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absorbing state . We define a Markov chain {Y;(m)} on the state space Q as
Yi(m) = [D(S}), D(X;_,), D(X})]. (4.10)

Based on (4.9) and (4.10), the transition probabilities can be determined with similar

procedures stated in Section 4.1.

For the case of ARY(2) process, it is readily that we only need to define
D(X 1) = 0 with P(D(X_;) = 0)=1. Hence, the state space €2 can be defined

by modifying (4.9) as
Q: {(07070)7(i7j7k)7a}7 (4'11)

where: =0,1,...,m+1, j = —m,—m+1,...,m,m+1,and k =4,:+1,..., —m+i.
Table 4.3 and Table 4.4 show the numerical results of ARLs for an upper-sided
CUSUM chart in the AR'(2) and AR"(2) processes, respectively. Again, high cor-

relation has the same effects for the ARLs as in the case of AR(1) process.

4.2 Enhancement of CUSUM control charts
4.2.1 Combined Shewhart-CUSUM control chart

It is known that a CUSUM control chart is not effective in detecting large shifts
as a Shewhart control chart. To improve for this, we can use the Shewhart control
chart and CUSUM control chart simultaneously. More precisely, we add a Shewhart
control limit into the CUSUM control chart. Note that, the Shewhart control limit
should be less than the CUSUM control limit. To gain the run-length properties for
a combined Shewhart-CUSUM chart, we follow the same procedures discussed in
Section 4.1 with slight modifications. There are two ways to modify the procedures:
(i) reconstruct the state space according to the new control limits, or (ii) retain the
state space defined in (4.7) and modify the transition probabilities according to the
new control limits. We provide details in the following. Again we first assume that

the observations are from an AR'(1) process.
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(i) Let h be the control limit of an upper-sided CUSUM control chart. The
chart signals if SY > h. Now, we add the Shewhart control limit, denoted
by hs (hs < h + k), into the CUSUM chart. Then the combined Shewhart-
CUSUM chart gives an out of control signal if S” > h or X] > hy, — k. In
a single CUSUM control chart, states that include m + 1 are regarding as
the absorbing state «. Since there are two control limits A and hg in the
combined Shewhart-CUSUM chart, the chart is said to be out of control if
D(SY) > h (= (m+1)A) or D(X]) > hy — k (= m*A, where m* = [2E]).
Thus states that include m + 1 in the first component or states that include
m* in the second component are combined into an absorbing state «. Based

on the discussion, the state space in (4.7) is modified as follows:

Q = {(©,0),0,-m),...,(0,0),...,(G-m+1i),...,(m" —1,m* — 1),

(m*,m* —1),...,(m,0),...,(m,m* —1),a}. (4.12)

The transition probability matrix M (m) of the imbedded Markov chain de-
fined on €2 can be easily obtained. Note that we choose hs to be hy = 40, if
h = 50, and hy; = 3.50, if h = 40,. We do not use the traditional Shewhart
control limit hy; = 30, since it may produce too many false alarms. We further
apply the same procedures to the case of AR'(2) process. The state space in

(4.9) can be modified as

Q = {(@,@,@),(0,—777/,@),...,(0,0,@),...,(m*—1,—m+m*—1,®),...,
(m*—1,m"—1,0),...,(m,0,0),...,(m,m* —1,0), (4,4, k), a},

(4.13)

wherei =0,...,m, j = —m+i,...,min(i,m*—1)and k = —m,...,0,...,m*—
1. We can also obtain the state space for AR"(1) and AR"(2) processes in a

similar fashion. We do not give further discussion.

(ii) We retain the state space given by (4.7) and modify the transition probabilities
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Puy from a state u = (is,7,) to a state v = (Js, jz) in the following sense:

Puv = P(min(hs: (]z - 05)A) - (mzA + (1 - (b)k,

min(hsa (.7:8 + 05)A) - (waA + (1 o (b)k) (4'14)

For AR"(1), AR'(2) and AR"(2) processes, the same approach remains appli-

cable.

Tables 4.5 and 4.6 give the ARLs for a combined Shewhart-CUSUM control
chart with various combinations of ¢ and & for AR'(1) and AR"(1) processes, re-

spectively.

4.2.2 FIR feature

The concept of Fast Initial Response (FIR) arises from that the process may be
already out of control at the beginning. Under this situation, we usually give a
non-zero initial value Hy (called a head-start value) for the CUSUM chart so that a
shift on the process mean can be detected more quickly. If the process is in a state
of statistical control, the value of the monitoring statistic will drop quickly without

any effect on the performance of the chart. Lucas and Crosier (1982) recommended

a head-start value to be Hy = % = HA (m should be odd). With the FIR
feature, all the procedures described in Section 4.1 remain the same except that the
transition probability from the initial state (), ) to a given state (js, j,) needs to
be modified. To see this, suppose that for a given state (j, j,) we have (without

the FIR feature)
P(Yy(m) = (Js, jz) | Y-1(m) = (0,0)) = p. (4.15)

If FIR is considered, then it turns out that the chain will move from state (@, () to
state (j; + ™, j;) with the same probability p, that is,

m-+1

P (Yolm) = (3 + ™5 =d2) | Yoa(m) = 0.0)) =p. (4.16)

In Tables 4.7 and 4.8, we show the ARLs for a CUSUM chart with FIR feature
for AR'(1) and AR"(1) processes, respectively.
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4.3 EWMA control charts
4.3.1 Average run lengths for AR(1) process

The EWMA control chart was first proposed by Roberts (1954). It has been demon-
strated that EWMA charts perform well as CUSUM charts for detecting small shifts

in the process mean. The EWMA monitoring statistic S; is given by
St = /\Xt + (1 - )\)St—la (417)

where 0 < A < 1 is a constant and o2 is the variance of X. Clearly, Shewhart
control chart is a special case of the EWMA chart when A = 1. It has been shown
by Hunter (1986) that

All— (1= X)2%
72 =v(s) =L

(4.18)

and an steady-state variance is given by oy ~ \/gax as t — oo. Hence the EWMA
control chart can be established with control limit + A (usually & = 30,). The chart
signals an alarm if |S;| > h. To analyze the run-length properties of a EWMA
control chart for AR'(1) process, we follow the two steps as follows:

Step 1: Discretization

Let £h be the control limits of a EWMA chart. Given a positive integer
m, the control chart is discretized into 2m + 1 regions within the interval (—h, h)
plus one region that exceeds the control limits. Then we obtain a sequence of
discretized random variables {D(S;)} of {S;}, where D(S;) takes values on i, for
i=0,%1,...,%£(m + 1). We define the conditional probabilities p;;, = P(D(S;) =
J | D(S;-1) = 1) from a state ¢ to a state j as follows: for 4,5 = 0,+1,...,+m,

PRI X
b = /(] (1-X)i+0.5)A% F(a) da,

(G—(1-X)i—0.5)A+

o0
o X dl‘a
P(m+1)]i /(mﬂ_(l_x)i—o.s)Ai fz)

(—(m+1)—(1-X)i+0.5)A ¢
D—(m+1)li = L z) du,
Pj|(m+1) = P(-m-1)7 = 0, and
P(m+1)|m+1) = P(-m-1),(—m-1) = 1. (4.19)
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Step 2: Imbedding

We introduce two dummy variables S_; and S_s and define D(S_;) = D(S_,) =
0 with P(D(S_1) = D(S_2) = 0) = 1. Further, define a state space {2 by

Q = {(0,0),,—m),...,(0,m),(—m,—m),...(—m,m),...,
0,—m),...,(0,m),...,(m,—m),...,(m,m),a}. (4.20)

As before, states that includes +(m + 1) are incorporated into an absorbing state
a. For t > —1, we define a Markov chain {Y;(m)} that takes values on the state
space €) as

Yi(m) = [D(S, 1), D(S)] (4.21)

It follows from (4.20) and (4.21) that the transition probabilities from state (i;_o, 7;_1)
at time ¢t — 1 to state (i;_1,4;) at time ¢ for the imbedded Markov chain {Y;(m)} can

be determined as follows: for ¢ = 0, we have
(1) if u=(0,0), v=(0,4) and 59 = 0,+1,...,+m, then
Yo(m) =v [ Yo1(m) = u)

Yo(m) = (0,40) | Y_1(m) = (0,0))
((io — 0.5)A/A) < Xo < ((io + 0.5)A/A))

puv:P

I
e,

(
(
= P(
= P(((io — 0.5)A/A) < X < ((i0 + 0.5)A/N)),
(2) if u = (0,0) and v = a, then

Puw = PYo(m)=v|Y_1(m) =)
= P(Xo> ((m+1) = 0.5)A/A or Xo < (—(m+1) + 0.5)A/)
— P(Xy > (m+0.5)A/\) + P(Xo < (=m — 0.5)A/)
where Xy ~ N (0, #), and for ¢t > 1, we have

(3) ifu= (it_Q, it—l)a v = (it—lait)a it—? = @, 0, :i:l, ey :I:m, and it—lait = 0, :I:l, ey
+ m, then

Puv = P(Y;(m) =v | Y;ffl(m) = U)
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= P(Yi(m) = (ir—1,4t) | Yier(m) = (-2, 4¢-1))
= P([(i — (1 = N)ig—1 — 0.5)A/A] < X; < [(5 — (1 = N)ig—1 + 0.5)A/A] |
Xy 1= (31 — (1= Ni_2)A/N)
= P([(is— (1 = N)iz1 — 0.5)A/N] < Xy 1+ < [(i — (1 = N)ig_1 +0.5)
A/ | X1 = (1 — (1= Ni_a)A/N)
= P([(iy— (1 = Nig 1 —0.5)A/N = iy 1 — (1= Ny 9)A/A] < &y <
[(is — (1 = N1 + 0.5)A /A — ¢(ip_1 — (1 — N)ir_2)A/N])
= ®([(iy — (1 = N)ip_1 + 0.5) — ¢(i_1 — (1 = N)iy_2)]A/A) —
O([(6r — (1 = A)ie—1 = 0.5) = d(ir—1 — (1 = N)z—2)]A/A),
(4) if u = (i_9,01-1), v = @, iy = 0,0,%1,...,4m, and 5,1 = 0,%1,...,+m,
then

= 1 ®([(m+0.5— (1 — Nir1) — d(ir1 — (1 — Nir_o)]A/N)
+ O((—m —05—(1—=XN)ip 1) — (i1 — (1 — N)ig2)|]A/N),
(5) if v = (is_1,4) and 4, 1,4, = 0, %+1,...,4+m, then
Pav =0,
(6) Paa = 1.

For AR"(1) process, the dummy variable S5 is not required. Hence, the state

space () is given by



The choices of the parameters for the EWMA control chart always affect the
performance of the chart. By appropriately choosing the parameters A and h, we
can obtain the desirable run-length properties for the EWMA charts. It has been
found that small X is contributive to detect small shifts and large A is contributive
to detect large shifts. For detecting small shifts, A = 0.1 and 0.2 are popular choices.

Some numerical results are presented in Tables 4.9—4.12.

4.3.2 Average run lengths for AR(2) process

In this section, we first assume that the observations are from a AR'(2) process.

Step 1: Discretization

This step is completely the same as the one discussed in Section 4.3.1 except

(1-¢»)
that X; ~ N (0, (1+¢2)(1_¢2+;1)(1_¢2_¢1) for each ¢.

Step 2: Imbedding

We introduce three dummy variables S_;, S_5 and S_3 and define an initial
state (D(S_3), D(S—2), D(S-1)) = (0,0, 0) with probability one. Now define a state
space €2 by

Q={(0,0,0),(0,i1,1s), (i, i, 75), }, (4.23)

where 7; = (0,0,£1,...,+m and 49,43,%4,75 = 0,%1,...,+m. Note that states
including the values +(m + 1) are combined into an absorbing state a.. We define a

Markov chain {Y;(m)} that takes values on the state space ) by
Yy(m) = [D(Si-2), D(S¢-1), D(S1)]. (4.24)

Following the same procedure stated in Section 4.3.1, the transition probabilities

can be easily obtained. We do not provide any further details.

4.4 Combined Shewhart-EWMA control chart

As the combined Shewhart-CUSUM chart, the combined Shewhart-EWMA control

chart can enhance the ability for detecting large shifts. Let hy and —hs be the
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upper and lower control limits for a Shewhart control chart in the AR'(1) process.
Let (i;_1,1;) be a state for the imbedded Markov chain {Y;(m)} at time ¢, then the
combined Shewhart-EWMA chart is said to be out of control if 4;_1,4; = +(m + 1),
or Sy > hs or S < —hs where Sy = (i — (1 — AN)iz1 + 0.5)A/X and S; =
(4t — (1 — N)ig_1 — 0.5)A/A. The transition probability from a state u = (i;_2,% 1)

to a state v = (4;_1,%;) in Section 4.3.1 is modified as

Puv = P(min{hs, max(SL, —hs)} — ¢(2’t71 — (]. - /\)Zt,Q)A/)\ S Et S

max{—h,, min(Sy, hs)} — d(is—1 — (1 — N)ig—a)A/A).  (4.25)

For more details, see Lucas and Saccucci(1990) for the i.i.d. case.

Similarly, for AR(2) process the transition probability from a state u = (4;_2, 941, i)
to a state v = (44_1, iz, 441) should be modified according to the new contol limits

as

Pww = P(min{hy, max(S}, —hs)} — é1(is — (1 — N)ig_1)
—da(iy 1 — (1 — N)ig_2)A/A) < & < max{—hg, min(Sy, hy)}

(@106 — (1 = AYie-1) — d2(ir—1 — (1 = A)ie—2) A/ X)), (4.26)

where S}, = [izy1 — (1 — A)iz + 0.5]A/X and S}, = [ig41 — (1 — A)ip — 0.5]A/A. Some

numerical results are presented in Tables 4.13 —4.16.
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Tables

Table 4.1: The ARLs of one-sided CUSUM chart for AR'(1) process with various
combinations of ¢ and &.

¢ & ARL simulation ¢ & ARL simulation

0 0 930.32 932.52 0.5 0 105.53 105.56
0.5 38.01 37.80 0.5 26.54 26.65

1 10.38 10.25 1 11.17 11.05

2 4.01 4.01 2 4.37 4.36

3 2.57 2.57 3 2.69 2.70

0.1 0 494.55 492.34 06 0 84.93 84.64
0.5  34.58 34.92 0.5 25.83 25.61

1 10.46 10.54 1 11.58 11.52

2 4.05 4.06 2 4.51 4.51

3 2.59 2.60 3 2.73 2.71

0.2 0 296.59 299.11 0.7 0 72.64 72.58
0.5 31.79 32.02 0.5 25.88 25.84

1 10.57 10.55 1 12.26 12.23

2 4.11 4.11 2 4.71 4.72

3 2.61 2.62 3 2.78 2.78

0.3 0 195.49 194.11 0.8 0 67.29 67.43
0.5  29.55 29.49 0.5 27.34 26.90

1 10.71 10.68 1 13.53 13.60

2 4.18 4.19 2 5.03 5.04

3 2.64 2.63 3 2.84 2.84

04 0 139.06 139.27 09 0 7340 73.76
0.5 27.80 28.02 0.5 33.10 33.47

1 10.90 10.74 1 16.72 16.74

2 4.26 4.25 2 5.69 5.66

3 2.66 2.67 3 2.95 2.98
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Table 4.2: The ARLSs of one-sided CUSUM chart for AR"(1) process with various
combinations of ¢ and £.

¢ & ARL simulation ¢ & ARL simulation

0 0 930.32 933.24 0.5 0 105.98 106.23
0.5 38.01 38.17 0.5 26.79 26.51

1 10.38 10.38 1 11.29 11.29

2 4.01 4.02 2 4.37 4.42

3 2.57 2.57 3 2.67 2.67

0.1 0 494.56 495.82 0.6 0 85.67 86.65
0.5 34.59 34.53 0.5 26.25 26.14

1 10.47 10.56 1 1177 11.86

2 4.06 4.05 2 4.49 4.50

3 2.59 2.58 3 2.68 2.68

0.2 0 296.65 297.31 0.7 0 73.86 72.76
0.5 31.83 31.47 0.5 26.57 26.87

1 10.58 10.46 1 1254 12.61

2 4.11 4.12 2 4.64 4.64

3 2.61 2.61 3 2.68 2.69

0.3 0 195.63 195.32 0.8 0 69.40 70.90
0.5 29.63 29.34 0.5 28.52 28.46

1 10.743 10.76 1 1391 13.98

2 4.18 4.18 2 4.79 4.82

3 2.63 2.63 3 2.65 2.66

04 0 139.33 137.72 09 0 77.86 76.71
0.5 27.95 28.01 0.5 35.34 34.79

1 10.96 11.02 1 16.99 17.09

2 4.26 4.25 2 4.82 4.89

3 2.65 2.66 3 2.57 2.56
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Table 4.3: The ARLs of one-sided CUSUM chart for AR'(2) process with various
combinations of ¢, ¢ and &.

o1 P9 ¢ ARL simulation 01 o)) ¢ ARL simulation
0.2 0.1 0 203.00 202.51 0.5 0.1 0 8591 88.06
0.5 30.28 30.15 0.5 26.40 26.27

1 10.86 10.95 1 11.82 11.77

2 4.18 4.17 2 4.53 4.51

3 2.63 2.63 3 2.73 2.72

025 0 132.84 135.59 025 0 7318 74.06

0.5 28.96 28.81 0.5 28.18 28.28

1 11.46 11.45 1 13.52 13.73

2 4.32 4.33 2 4.92 4.89

3 2.66 2.66 3 2.80 2.81

045 0 9296 93.29 0.4 0 84.28 85.52

0.5 29.29 28.78 0.5 37.99 38.65

1 12.87 12.71 1 18.78 18.78

2 4.62 4.59 2 5.94 5.89

3 2.7 2.7 3 2.96 2.93

0.7 0 96.71 96.69 0.75 0.1 0 69.72 70.90

0.5  42.00 42.71 0.5 30.15 30.16

1 19.97 20.08 1 15.10 15.16

2 5.91 5.91 2 5.34 5.32

3 291 2.91 3 2.89 2.88

09 0.05 0 94.74 96.84 0.2 0 101.44 102.06
0.5  44.59 44.77 0.5 47.59 47.59

1 2225 22.43 1 23.52 23.55

2 6.65 6.52 2 6.81 6.86

3 3.07 3.07 3 3.08 3.06
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Table 4.4: The ARLs of one-sided CUSUM control chart for AR"(2) process with
various combinations of ¢ and &.

o1 P9 ¢ ARL simulation 01 o)) ¢ ARL simulation
0.2 0.1 0 203.17 202.73 0.5 0.1 0 86.73 86.87
0.5 30.36 30.62 0.5 26.85 27.11

1 10.90 11.03 1 11.99 11.96

2 4.18 4.15 2 4.50 4.47

3 2.62 2.64 3 2.67 2.67

025 0 133.36 132.38 025 0 75.15 74.85

0.5 29.21 29.17 0.5 29.21 29.39

1 11.55 11.56 1 13.81 13.79

2 4.31 4.32 2 4.71 4.66

3 2.63 2.65 3 2.65 2.64

045 0 9449 94.96 0.4 0 90.15 91.00

0.5 30.05 30.18 0.5 40.53 40.16

1 13.08 13.08 1 18.55 18.37

2 4.50 4.53 2 4.70 4.64

3 2.63 2.63 3 2.55 2.55

0.7 0 103.86 103.69 0.75 0.1 0 7288 73.64

0.5 44.82 44.52 0.5 31.80 31.76

1 19.29 19.35 1 15.46 15.50

2 4.51 4.48 2 4.84 4.80

3 2.53 2.53 3 2.61 2.60

09 0.05 0 103.17 104.65 0.2 0 110.80 111.61
0.5 4797 48.21 0.5 51.04 51.70

1 21.13 20.92 1 21.85 21.87

2 4.52 4.53 2 4.46 4.42

3 2.52 2.52 3 2.51 2.51
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Table 4.5: The ARLs of combined Shewhart-CUSUM chart for AR'(1) process with
various combinations of ¢ and &.

¢ & ARL simulation ¢ & ARL simulation
0 0 911.77 913.41 0.5 0 105.54 105.82
0.5 3793 38.10 0.5 26.54 26.35

1 10.36 10.43 1 1117 11.13

2 3.96 3.94 2 4.34 4.37

3 2.39 2.39 3 2.54 2.54

0.1 0 490.67 488.76 0.6 0 84.94 85.30
0.5 34.54 35.08 0.5 25.83 25.93

1 10.45 10.39 1 11.58 11.49

2 4.01 4.02 2 4.48 4.47

3 2.42 2.43 3 2.58 2.58

0.2 0 295.73 291.23 0.7 0 72.66 71.49
0.5 31.77 31.87 0.5 25.88 25.67

1 10.56 10.67 1 12.26 12.45

2 4.07 4.07 2 4.69 4.69

3 2.44 2.44 3 2.62 2.61

0.3 0 195.32 195.90 0.8 0 67.30 67.60
0.5 29.54 29.71 0.5 27.34 27.41

1 10.70 10.68 1 13.52 13.84

2 4.14 4.12 2 5.00 5.00

3 247 247 3 2.69 2.70

04 0 139.05 137.67 09 0 7343 74.20
0.5 27.80 27.85 0.5 33.11 33.92

1 10.89 10.80 1 16.72 16.72

2 4.23 4.20 2 5.66 5.62

3 2.50 2.49 3 2.80 2.78

52



Table 4.6: The ARLSs of combined Shewhart-CUSUM chart for AR"(1) process with
various combinations of ¢ and &.

¢ & ARL simulation ¢ & ARL simulation
0 0 911.98 912.78 0.5 0 106.00 104.95
0.5 3793 38.11 0.5 26.79 27.07

1 10.36 10.38 1 11.28 11.26

2 3.96 3.97 2 4.35 4.39

3 2.39 2.40 3 2.54 2.55

0.1 0 490.76 492.56 06 0 85.69 85.96
0.5 34.54 34.29 0.5 26.25 26.08

1 10.45 10.43 1 1177 11.75

2 4.01 4.01 2 4.48 4.48

3 2.42 2.42 3 2.57 2.57

0.2 0 295.83 296.21 0.7 0 7388 74.38
0.5 31.80 32.26 0.5 26.58 26.40

1 10.57 10.56 1 1254 12.63

2 4.08 4.07 2 4.63 4.64

3 2.45 2.44 3 2.60 2.60

0.3 0 19547 196.86 0.8 0 69.42 69.13
0.5 29.62 29.35 0.5 28.52 29.00

1 10.74 10.68 1 1391 13.80

2 4.15 4.16 2 4.79 4.77

3 2.48 2.47 3 2.60 2.61

04 0 139.33 140.49 09 0 77.90 78.54
0.5 27.94 28.00 0.5 35.35 35.22

1 10.96 10.91 1 16.99 16.92

2 4.24 4.27 2 4.82 4.81

3 2.51 2.52 3 2.56 2.55
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Table 4.7: The ARLs of CUSUM chart with FIR feature (H, = %) for AR'(1)
process with various combinations of ¢ and &.

¢ & ARL simulation ¢ & ARLs simulation
0 0 895.24 901.41 0.5 0 96.11 97.07
0.5 28.70 28.48 0.5 20.98 20.74

1 6.33 6.38 1 767 7.63

2 2.36 2.38 2 2.66 2.69

3 1.54 1.53 3 1.59 1.59

0.1 0 469.91 466.44 06 0 76.98 77.20
0.5 26.29 26.22 0.5 20.71 20.87

1 6.53 6.45 1 817 8.11

2 2.40 2.42 2 2.77 2.81

3 1.54 1.55 3 161 1.62

0.2 0 278.26 280.58 0.7 0 65.77 65.36
0.5 24.36 24.46 0.5 21.10 21.18

1 6.75 6.87 1 8.89 8.95

2 2.45 2.46 2 2.93 2.92

3 1.55 1.55 3  1.63 1.63

0.3 0 181.25 182.58 0.8 0 61.16 61.85
0.5 2285 22.93 0.5 22.77 22.50

1 7.00 7.10 1 10.14 10.15

2 2.51 2.53 2 3.17 3.17

3 1.57 1.57 3 1.66 1.66

04 0 127.64 126.84 09 0 67.61 67.88
0.5 21.72 21.52 0.5 28.49 28.24

1 7.30 7.32 1 13.15 12.85

2 2.58 2.62 2 3.68 3.77

3 1.58 1.59 3 1.72 1.73
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Table 4.8: The ARLs of CUSUM chart with FIR feature (Hy = %) for AR"(1)
process with various combinations of ¢ and &.

¢ & ARL simulation ¢ & ARLs simulation
0 0 895.24 890.21 0.5 0 9741 96.58
0.5 28.70 28.54 0.5 21.26 21.56

1 6.33 6.38 1 7.69 7.70

2 2.36 2.36 2 2.63 2.66

3 1.54 1.54 3 1.56 1.56

0.1 0 470.04 474.56 06 0 7872 78.83
0.5 26.30 26.06 0.5 21.14 21.19

1 6.53 6.52 1 817 8.27

2 2.40 2.39 2 2.70 2.67

3 1.54 1.55 3  1.56 1.57

0.2 0 278.65 274.94 0.7 0 68.17 67.67
0.5 24.40 24.33 0.5 21.76 21.60

1 6.75 6.80 1 8.86 8.89

2 2.45 2.47 2 2.76 2.75

3 1.55 1.55 3 1.55 1.55

03 0 181.91 183.51 0.8 0 64.73 64.88
0.5 2294 23.01 0.5 23.81 24.09

1 7.01 7.01 1 9.96 10.03

2 2.51 2.53 2 2.78 2.82

3 1.56 1.56 3 1.52 1.53

04 0 128.60 129.66 09 0 7411 73.70
0.5 21.89 22.08 0.5 30.23 30.26

1 7.31 7.48 1 1212 12.03

2 2.57 2.56 2 2.63 2.65

3 1.56 1.57 3 1.50 1.51
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Table 4.9: The ARLs of EWMA chart for AR'(1) process with A=0.2 and various
combinations of ¢ and £.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 559.68 556.54 0.5 0 62.32 61.63
0.5 44.13 43.97 0.5 28.22 28.04

1 10.84 10.81 1 11.52 11.47

2 3.8 3.83 2 421 4.21

3 241 241 3 254 2.53

0.1 0 306.01 308.44 0.6 0 48.33 48.03
0.5 39.18 39.02 0.5 26.67 26.68

1 10.86 10.77 1 11.97 11.88

2 3.85 3.84 2 437 4.39

3 2.43 2.42 3 258 2.59

02 0 184.91 182.69 0.7 0 39.43 39.71
0.5 35.43 35.84 0.5 25.55 25.41

1 10.92 10.95 1 12.68 12.72

2 3.92 3.93 2 4.59 4.54

3 2.45 2.43 3 263 2.63

0.3 0 120.98 119.56 0.8 0 34.23 34.07
0.5 32.49 32.49 0.5 25.22 25.02

1 11.04 10.91 1 13.91 13.84

2 3.99 4.00 2 496 4.94

3 2.48 247 3 270 2.70

04 0 84.47 84.61 09 0 33.56 33.74
0.5 30.14 30.44 0.5 27.29 27.26

1 11.23 11.13 1 16.81 16.56

2 4.09 4.07 2 b5.75 5.81

3 2.51 2.50 3 282 2.81
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Table 4.10: The ARLs of EWMA chart for AR'(1) process with A=0.1 and various
combinations of ¢ and £.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 841.46 847.33 0.5 0 76.99 77.04
0.5 3741 37.02 0.5 29.57 29.74

1 11.38 11.49 1 12.29 12.44

2 4.67 4.68 2 5.01 5.02

3 3.05 3.04 3  3.16 3.17

0.1 0 437.58 434.22 0.6 0 57.20 57.29
0.5 35.37 35.94 0.5 28.35 28.37

1 11.48 11.46 1 12.72 12.81

2 4.71 4.71 2 515 5.14

3 3.06 3.07 3 3.20 3.22

0.2 0 254.20 252.25 0.7 0 44.32 44.27
0.5 33.64 34.06 0.5 27.13 27.21

1 11.60 11.58 1 13.38 13.52

2 4.76 4.74 2 535 5.33

3 3.08 3.08 3 3.25 3.26

0.3 0 160.63 161.02 0.8 0 36.07 36.44
0.5 32.14 31.91 0.5 26.11 25.79

1 11.76 11.82 1 14.44 14.43

2 4.83 4.83 2 5.67 5.66

3 3.10 3.09 3 331 3.33

04 0 108.34 110.02 0.9 0 32.04 31.71
0.5 30.81 30.58 0.5 26.27 26.38

1 11.98 11.82 1 16.59 16.78

2 4.91 4.88 2 6.34 6.31

3 3.13 3.13 3 343 3.41
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Table 4.11: The ARLs of EWMA chart forAR"(1) process with A=0.2 and various
combinations of ¢ and £.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 559.68 563.53 0.5 0 62.73 62.64
0.5 44.13 44.01 0.5 28.41 28.10

1 10.84 10.80 1 11.60 11.53

2 3.8 3.80 2 421 4.21

3 241 2.42 3 252 2.52

0.1 0 306.03 309.92 0.6 0 49.01 48.10
0.5 39.19 39.23 0.5 27.03 27.11

1 10.86 10.85 1 12.11 12.03

2 3.85 3.86 2 436 4.36

3 2.43 2.44 3 253 2.53

0.2 0 184.96 186.33 0.7 0 40.56 40.46
0.5 35.44 36.29 0.5 26.23 26.14

1 10.93 10.98 1 1292 12.90

2 3.92 3.93 2 454 4.54

3 2.45 2.45 3 253 2.54

0.3 0 121.10 120.79 0.8 0 36.23 36.72
0.5 32.54 32.05 0.5 26.51 26.72

1 11.06 11.01 1 14.34 14.27

2 3.99 3.99 2 478 4.76

3 247 2.48 3 250 2.50

04 0 84.70 85.28 09 0 37.95 38.28
0.5 30.24 30.98 0.5 30.30 30.49

1 11.27 11.20 1 17.60 17.89

2 4.09 4.08 2 498 4.95

3 2.50 2.49 3 238 2.38
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Table 4.12: The ARLs of EWMA chart for AR"(1) process with A=0.1 and various
combinations of ¢ and £.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 841.46 837.91 05 0 77.36 76.88
0.5 3741 37.52 0.5 29.70 29.47

1 11.38 11.48 1 12.33 12.26

2 4.67 4.68 2 5.01 5.01

3 3.05 3.05 3 3.15 3.16

0.1 0 437.59 440.23 0.6 0 57.83 57.33
0.5 35.37 35.20 0.5 28.61 28.90

1 11.48 11.45 1 12.80 12.78

2 4.71 4.71 2 514 5.13

3 3.06 3.06 3 3.18 3.18

0.2 0 254.25 252.10 0.7 0 45.38 45.69
0.5 33.64 33.37 0.5 27.66 27.85

1 11.61 11.61 1 13.53 13.35

2 4.76 4.76 2 531 5.27

3 3.08 3.08 3 3.20 3.20

0.3 0 160.74 159.28 0.8 0 37.95 38.42
0.5 32.16 32.22 0.5 27.20 27.21

1 11.77 11.77 1 14.72 14.68

2 4.83 4.84 2 5.1 5.53

3 3.10 3.11 3 3.20 3.23

04 0 108.55 108.48 09 0 36.09 36.43
0.5  30.87 31.26 0.5 28.88 28.52

1 12.00 11.98 1 17.08 17.05

2 4.91 4.93 2 5.66 5.63

3 3.13 3.13 3 3.15 3.15
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Table 4.13: The ARLSs of combined Shewhart-EWMA chart for AR'(1) process with
A=0.2 and various combinations of ¢ and &.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 546.77 548.35 0.5 0 6231 62.88
0.5 44.04 44.15 0.5 28.21 27.76

1 10.82 10.81 1 11.52 11.50

2 3.76 3.77 2 418 4.19

3 2.26 2.26 3 240 2.38

0.1 0 302.93 302.10 0.6 0 48.33 47.71
0.5 39.13 39.27 0.5 26.67 26.96

1 10.85 10.82 1 11.97 12.00

2 3.82 3.82 2 434 4.36

3 2.28 2.30 3 244 2.44

02 0 184.11 183.01 0.7 0 39.43 39.64
0.5  35.40 35.07 0.5 25.55 25.69

1 10.92 10.87 1 12.68 12.51

2 3.89 3.88 2 457 4.55

3 2.31 2.31 3 249 2.49

0.3 0 120.77 120.69 0.8 0 34.23 34.27
0.5 3248 32.74 0.5 25.22 24.78

1 11.04 10.94 1 13.91 13.96

2 3.96 3.95 2 4.9 4.94

3 2.34 2.34 3  2.56 2.58

04 0 84.42 84.23 09 0 33.56 33.29
0.5 30.13 30.48 0.5 27.29 26.87

1 11.23 11.27 1 16.81 16.76

2 4.06 4.07 2  5.73 5.81

3 2.37 2.38 3  2.68 2.67
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Table 4.14: The ARLSs of combined Shewhart-EWMA chart for AR'(1) process with
A=0.1 and various combinations of ¢ and &.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 805.14 806.34 05 0 76.93 76.83
0.5 37.33 37.22 0.5 29.56 29.83

1 11.35 11.33 1 12.28 12.46

2 4.58 4.59 2 497 4.95

3 2.75 2.76 3 294 2.95

0.1 0 428.75 424.30 0.6 0 57.19 56.01
0.5 35.31 35.31 0.5 28.35 28.54

1 11.46 11.44 1 12,72 12.87

2 4.63 4.65 2 511 5.12

3 2.78 2.78 3 3.00 2.99

0.2 0 251.73 255.22 0.7 0 44.32 43.93
0.5 33.59 33.76 0.5 27.13 26.98

1 11.58 11.64 1 13.38 13.42

2 4.69 4.66 2 5.32 5.30

3 2.82 2.83 3 3.06 3.06

0.3 0 159.89 160.65 0.8 0 36.07 35.53
0.5 32.11 32.18 0.5 26.11 26.21

1 11.75 11.77 1 14.44 14.43

2 4.76 4.77 2 5.6 5.56

3 2.85 2.86 3 314 3.12

04 0 108.12 109.06 09 0 32.04 32.43
0.5 30.79 30.63 0.5 26.27 26.02

1 1197 12.01 1 16.59 16.62

2 4.85 4.84 2 6.31 6.33

3 2.90 2.90 3 3.27 3.27
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Table 4.15: The ARLs of combined Shewhart-EWMA chart for AR"(1) process with
A=0.2 and various combinations of ¢ and &.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 546.77 550.61 0.5 0 62.72 62.89
0.5 44.04 44.25 0.5 28.41 28.26

1 10.82 10.84 1 11.60 11.71

2 3.76 3.78 2 420 4.19

3 2.26 2.26 3 240 2.40

0.1 0 30295 305.09 0.6 0 49.01 48.75
0.5 39.14 39.27 0.5 27.03 26.83

1 10.85 10.90 1 12.11 12.19

2 3.82 3.83 2 435 4.35

3 2.28 2.28 3 243 2.44

02 0 184.16 183.36 0.7 0 40.56 40.65
0.5 35.42 35.17 0.5 26.23 26.05

1 10.92 10.90 1 1292 12.92

2 3.89 3.87 2 454 4.54

3 2.31 2.32 3 246 2.45

0.3 0 120.90 121.29 0.8 0 36.23 36.45
0.5 32.52 32.62 0.5 26.51 26.59

1 11.05 11.11 1 14.34 14.23

2 3.97 3.97 2 478 4.71

3 2.34 2.34 3 245 2.45

04 0 84.65 84.79 09 0 37.95 37.97
0.5 30.23 30.02 0.5 30.30 30.27

1 11.27 11.30 1 17.60 17.78

2 4.07 4.09 2 498 5.01

3 2.37 2.37 3 237 2.38
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Table 4.16: The ARLs of combined Shewhart-EWMA chart for AR"(1) process with
A=0.1 and various combinations of ¢ and &.

¢ & ARL simulation 0] ¢ ARL simulation

0 0 805.14 801.24 05 0 7731 78.09
0.5 37.33 37.20 0.5 29.69 29.53

1 11.35 11.38 1 12.32 12.35

2 4.58 4.57 2 499 4.99

3 2.75 2.75 3 297 2.98

0.1 0 428.76 429.33 0.6 0 57.82 57.60
0.5 35.31 35.30 0.5 28.61 28.45

1 11.46 11.50 1 12.80 12.86

2 4.63 4.62 2 513 5.13

3 2.78 277 3  3.03 3.05

0.2 0 251.78 256.63 0.7 0 45.38 45.37
0.5 33.60 33.89 0.5 27.66 27.77

1 11.59 11.66 1 13.53 13.50

2 4.70 4.69 2 530 5.28

3 2.82 2.81 3 3.09 3.09

0.3 0 160.01 158.93 0.8 0 37.95 37.69
0.5 3213 32.38 0.5 27.20 27.10

1 11.76 11.78 1 14.72 14.69

2 4.77 4.76 2 5.1 5.54

3 2.87 2.87 3 314 3.14

04 0 108.34 108.49 09 0 36.09 36.31
0.5 30.85 30.79 0.5 28.88 28.88

1 12.00 12.05 1 17.08 17.14

2 4.87 4.85 2 5.66 5.66

3 2.92 2.92 3 3.14 3.13
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Chapter 5

Comparisons

In this chapter, we compare the performances of compound control charts Ry;, 1 =
2,3,4, with EWMA and combined Shewhart-EWMA charts for AR'(1) process. For
each chart, we set up the value of ARLj to be 250. In Table 5.1, we list numerical
results of ARL; corresponding to different levels of shifts for compound control
charts and EWMA charts with A = 0.2 which is the most common used value.
Table 5.2 shows numerical results of ARL; for compound and Shewhart-EWMA
control charts with selected values of A. At each level of shift, the smallest ARL;

value is presented in a boldface style.

Some conclusions can be drawn from these numerical results. From Table 5.1,
we see that compound control charts only have advantages for large shifts and for
higher values of ¢. Moreover, Table 5.2 asserts that for A = 0.1 and 0.2, the
combined Shewhart-EWMA charts perform better (except ¢ = 0.9) than compound
control charts when the the levels of shifts are less than or equal to two sigma.
For larger shifts, the combined Shewhart-EWMA charts still perform better except
for the values ¢ = 0.25 and A = 0.7 and 0.9. In general, we have found that the

combined Shewhart-EWMA control charts perform well in most cases.
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Table 5.1: Numerical values of ARLs for compound control and EWMA charts
(A =0.2) for AR'(1) process.

RS Ry Ry Ry EWMA
0 0 250.41 249.91 250.06 249.55
0.5 84.50 60.28 57.75 29.99

1 21.26 14.91 18.43 8.88

2 3.76 4.03 8.00 3.39

3 1.70 2.08 4.54 2.21

0.25 0 250.59 250.15 N/A 250.27
0.5 91.83 69.30 — 45.24

1 25.40 19.24 — 13.00

2 4.66 5.22 — 4.37

3 1.90 2.85 — 2.65

0.5 0 250.16 250.27 N/A 250.09
0.5 106.98 86.84 — 68.70

1 33.69 27.25 — 20.61

2 6.45 7.03 — 6.03

3 2.28 4.06 — 3.33

0.75 0 250.38 250.36 N/A 250.50
0.5 131.04 114.61 — 108.51

1 49.27 43.07 — 38.18

2 10.13 10.37 — 9.88

3 2.84 4.82 — 4.56

0.9 0 250.11 249.48 N/A 250.53
0.5 158.02 146.87 — 151.04

1 71.15 65.65 — 66.15

2 14.82 15.02 — 16.34

3 2.66 4.92 — 5.78

N/A : The in-control ARLs can not reach 250.
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Table 5.2: Numerical values of ARLs for compound control and Shewhart-EWMA
charts for AR'(1) process.

o £ Ry Ri3 Ry S—FEys S—FEyx S—Ey;: S—Eyg
0 0 250.41 249.91 250.06 250.16 249.47 249.63 249.56
0.5 84.50 60.28 57.75 30.12 24.65 74.49 97.61

1 21.26 14.91 18.43 8.89 8.97 18.25 26.99

2 3.76 4.03 8.00 3.37 3.89 3.01 4.43

3 1.70 2.08 4.54 2.11 2.43 1.68 1.73

0.25 0 250.59 250.15 N/A 250.85 250.00 250.54 249.34
0.5 91.83 69.30 — 45.41 36.27 88.59 104.38

1 25.40 19.24 — 13.03 12.39 24.35 31.05

2 4.66 5.22 — 4.34 4.93 4.66 5.42

3 1.90 2.85 — 2.50 2.93 1.96 1.94

0.5 0 250.16 250.27 N/A 250.19 250.31 249.63 249.92
0.5 106.98 86.84 — 68.80 55.79 105.58 115.10

1 33.69  27.25 — 20.63 18.54 33.17 37.77

2 6.45 7.03 — 6.00 6.64 6.55 7.08

3 2.28 4.06 — 3.15 3.67 2.40 2.23

0.75 0 250.38 250.36 N/A 251.65 250.93 250.02 243.62
0.5 131.04 114.61 — 108.88 94.67 130.11 130.71

1 49.27  43.07 — 38.27 33.71 48.73 49.97

2 10.13  10.37 — 9.88 10.46 10.24 10.27

3 2.84 4.82 — 4.35 5.22 3.03 2.54

0.9 0 250.11 249.48 N/A 250.53 250.10 249.90 249.38
0.5 158.02 146.87 — 151.04 143.70 157.59 158.07

1 71.15 65.65 — 66.15 62.03 70.76 71.26

2 14.82 15.02 — 16.34 17.32 15.14 14.92

3 2.66 4.92 — 5.70 7.40 2.96 2.11

N/A : The in-control ARLs can not reach 250.
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