國立高雄大學九十五學年度研究所碩士班招生考試試題

科目:數理統計

考試時間: 100 分鐘 本科原始成績:滿分 100 分

1. Let f_0 and f_1 be two probability density functions. The Kullback-Leibler information number is defined as

$$K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)} = \int \log \frac{f_0(x)}{f_1(x)} f_0(x) dx.$$

Show that $K(f_0, f_1) \geq 0$. (12 points)

- 2. Suppose X_1, \dots, X_n are i.i.d. uniform observations on the interval $(\theta, \theta + 1)$, $-\infty < \theta < \infty$. Find a minimal sufficient statistic for θ . (10 points)
- 3. Suppose 2n random variables, $X_1, Y_1, X_2, Y_2, \dots, X_n, Y_n$, are independent, and for each $i, i = 1, \dots, n$, X_i and Y_i follow the normal distribution with mean μ_i and variance σ^2 , i.e. $N(\mu_i, \sigma^2)$. Here the parameters, μ_1, \dots, μ_n and σ^2 , are assumed to be unknown.
 - (a) Find the MLE of σ^2 , $\hat{\sigma}^2$, and show that $\hat{\sigma}^2$ is a biased estimator of σ^2 . (12 points)
 - (b) Based on $\hat{\sigma}^2$, find the best unbiased estimator (UMVUE) of σ^2 . (12 points)
- 4. Let X_1, \dots, X_n be a sample from a $N(\mu_1, \sigma^2)$ and Y_1, \dots, Y_m be another independent sample from a $N(\mu_2, \rho^2 \sigma^2)$, where ρ is known. Define $\bar{X} = \sum_{i=1}^n X_i/n$; $\bar{Y} = \sum_{i=1}^m Y_i/m$; $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ and $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i \bar{Y})^2$. Show that

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n} + \frac{\rho^2}{m}} \sqrt{\frac{(n-1)S_X^2 + (m-1)S_Y^2/\rho^2}{n+m-2}}}$$

has a t distribution with n+m-2 degrees of freedom and $S_Y^2/(\rho^2 S_X^2)$ has an F distribution with m-1 and n-1 degrees of freedom. (20 points)

- 5. Suppose that X_1, \dots, X_n are i.i.d. with a beta $(\mu, 1)$ pdf and Y_1, \dots, Y_m are i.i.d. with a beta $(\theta, 1)$ pdf. Also assume that the Xs are independent of the Ys.
 - (a) Find an likelihood ratio test (LRT) of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$, and show that this LRT can be based on

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_j}.$$

(12 points)

- (b) When H_0 is true, find the distribution of T, and then show how to get a test of size $\alpha = 0.10$. (10 points)
- 6. Let X_1, \dots, X_n be a sample with pdf $f(x|\theta) = \theta \exp(-\theta x), x > 0$. Here the parameter θ is unknown and $\theta > 0$. Now we are interesting in testing

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta < \theta_0.$$

Find the UMP (uniformly most powerful) level α test. (12 points)