## 國立高雄大學九十六學年度研究所碩士班招生考試試題

科目:機率論 系所: 統計學研究所 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

- Prove each of the following statements. (Assume that any conditioning event has positive probability)
  - (1) If P(B) = 1, then P(A|B) = P(A) for any A. (5%)
  - (2) Assume that P(A) > 0 and P(B) > 0. If A and B are independent, then they cannot be mutually exclusive, and if A and B are mutually exclusive, then they cannot be independent. (5%)
- 2. Prove that the following functions are cdfs.

(1) 
$$1 - \exp(-x), x \in (0, \infty), (2) \exp(-e^{-x}), x \in (-\infty, \infty).$$
 (10%)

Consider the following two pdfs,

$$f_1(x) = \frac{1}{\sqrt{2\pi}x} \exp(-(\log x)^2/2), x \ge 0$$
, and  $f_2(x) = f_1(x)[1 + \sin(2\pi \log x)], x \ge 0$ .

Show that

- (1) If  $X_1 \sim f_1(x)$ , then  $E(X_1^r) = \exp(r^2/2), r = 0, 1, 2, ...$  (10%)
- (2) Suppose  $X_2 \sim f_2(x)$ . Then  $E(X_1^r) = E(X_2^r)$  for  $r = 0, 1, 2, \dots$  (10%)
- 4. Prove the following inequalities.
  - Let X be a random variable with moment-generating function, M<sub>X</sub>(t), -h < t < h. Show that</li>

$$P(X \ge a) \le e^{-at} M_X(t), 0 < t < h, \text{ and } P(X \le a) \le e^{-at} M_X(t), -h < t < 0.$$
(10%)

(2) Let  $X_1, \ldots, X_n$  be iid with mgf  $M_X(t), -h < t < h$ , and let  $S_n = \sum_{i=1}^n X_i$ . Show that

$$P(S_n > a) \le e^{-at} [M_X(t)]^n, 0 < t < h, \text{ and } P(S_n \le a) \le e^{-at} [M_X(t)]^n, -h < t < 0.$$
(10%)

## 國立高雄大學九十六學年度研究所碩士班招生考試試題

科目:機率論 系所: 統計學研究所 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

5. Suppose  $U_1$  and  $U_2$  are iid Uniform(0,1). Let

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log U_2}$$
 and  $X_2 = \sin(2\pi U_1)\sqrt{-2\log U_2}$ .

Prove that  $X_1$  and  $X_2$  are independent N(0,1) random variables. (10%)

 Let X and Y be independent N(0,1) random variables. Define a new random variable, Z, by

$$Z = \left\{ \begin{array}{ll} X & \text{, if } XY > 0 \\ -X & \text{, if } XY < 0 \end{array} \right..$$

Show that Z has a normal distribution. (10%)

- 7. Find the pdf of  $\prod_{i=1}^{n} X_i$ , where  $X_i$ s are independent Uniform(0,1) random variables. (10%)
- Let X ~ Poisson(θ) and Y ~ Poisson(λ), and X and Y are independent. Find the distribution of X|X + Y. (10%)