第四章 生成函數

(Generating functions)

在組合數學中我們常常會遇到計算一種量,它會隨著k的改變而有所不同;這種量我們可以把它想成是k的函數,以f(k)表示,或簡單以 a_k 表示。一串數列 a_k 和它的生成函數一一對應。

4.1 定義與範圍:計算技巧

問題 1.

目前台幣的發行一共有一元、五元、十元、五十元四種銅板,現在若把 一張百元鈔票換成全部是銅板,一共有多少種不同的方法?

(註)如果我們把問題想成:用銅板來湊成k元的方法數為 a_k ,則我們是在求 a_k ,下列為一些簡單的數據。

在上面圖 1 中,我們將在每一列各選一堆(劃底線),若以一個 χ 代表一元,則可以轉成下式:

圖 1

$$(1+x+x^2+\cdots)(1+x^5+x^{10}+\cdots)(1+x^{10}+x^{20}+\cdots)(1+x^{50}+x^{100}+\cdots)$$
 (1)

如果把(1)式化成 $\sum_{k=0}^{\infty} a_k x^k$ 的形式,則 a_k 為所求。

在這裡 $\sum_{k=0}^{\infty} a_k x^k$ 為一**冪級數** (Power series)。不過為了便於生成函數的研究,下面假設是必要的。

(假設) $\sum_{k=0}^{\infty} a_k x^k \, dx$ 點收斂。

定義 4.1:

令數列 (a_k) 為實數數列,函數 $G(x)=a_0+a_1x+a_2x^2+\cdots=\sum_{i=0}^\infty a_ix^i$,稱為 該序列的**生成函數** (generating function)。

我們不難發現 (1) 式可以寫成 $\frac{1}{1-x} \cdot \frac{1}{1-x^5} \cdot \frac{1}{1-x^{10}} \cdot \frac{1}{1-x^{50}}$

為了求問題1的解,我們假設

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} A_n x^n$$

$$\frac{1}{(1-x)(1-x^5)} = \sum_{n=0}^{\infty} B_n x^n$$

$$\frac{1}{(1-x)(1-x^5)(1-x^{10})} = \sum_{n=0}^{\infty} C_n x^n$$

$$\frac{1}{(1-x)(1-x^5)(1-x^{10})(1-x^{50})} = \sum_{n=0}^{\infty} D_n x^n$$

$$A_n = B_n = C_n = D_n$$
, $\forall n < 0$

由於

$$\sum_{n=0}^{\infty} A_n x^n = (1 - x^5) \sum_{n=0}^{\infty} B_n x^n$$
$$= \sum_{n=0}^{\infty} B_n x^n - \sum_{n=0}^{\infty} B_n x^{n+5}$$

因此

$$A_n = B_n - B_{n-5} \tag{2}$$

換言之

$$B_n = A_n - B_{n-5} \tag{3}$$

$$C_n = B_n - C_{n-5} \tag{4}$$

$$D_n = C_n - D_{n-50} (5)$$

由(3),(4),(5)及 $A_n=1$, $\forall n\geq 0$, $B_0=C_0=D_0=1$,我們可以求得 D_{100} 即為問題 1 的答案。

問題 2.

令 H_r^n 為在n種物品中,可重複選擇(每樣物品)r個物品的不同方法數,求 H_6^{10} 。

利用相似的概念我們可以求得 H"的生成函數為

$$\left(1+x+x^2\cdots\right) = \left(\frac{1}{1-x}\right)^n \circ$$

因為 $(1+x)^n = \sum_{k=0}^{\infty} {n \choose k} x^k$ 中的n可以推廣至實數,因此

$$(1+x)^{\alpha} = \sum_{k} {\alpha \choose k} x^{k} , \alpha \in \mathbb{R} , |x| < 1$$
 (6)

於是利用(6), $(1+(-x))^{-n}$,我們求得

$$H_r^n = {n \choose r} (-1)^r$$

$$= \frac{(-n)(-n-1)\cdots(-n-r+1)}{1\cdots r} (-1)^r$$

$$= \frac{(n+r-1)(n-r-2)\cdots(n+1)n}{r!}$$

$$= {n+r-1 \choose r}$$

所以 $H_6^{10} = \begin{pmatrix} 15 \\ 6 \end{pmatrix}$

問題 3.

把一個正整數寫成正整數和的方法有多少種?

令 n 為給定的正整數 , p(n)代表分割的方法數 。現在考慮 $f(x) = (1+x+x^2+\cdots)(1+x+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)\cdots(1+x^n+x^{2n}+\cdots)$,顯然 p(n) 代表 f(x) 中 x^n 中的係數 ;所以 f(x) 自然成為 p(n) 的生成函數 。 f(x) 也可以寫成 $\prod_{i=1}^{n} (1-x^i)^{-1}$ (7)

利用上述表示法對於解決 p(n) 計算的問題顯然不具太大的意義,然而,當我們把n作比較特殊的分割時,(7) 就可以幫上一些忙。例如,把n分割成全部都是相異正整數的方法數就會等於把n分割成全部是奇數的方法數:因為前者 $p_{d}(n)$ 的生成函數為

$$(1+x)(1+x^2)(1+x^3) \cdots (1+x^n) \cdots$$
 (8)

而後者
$$p_0(d)$$
 的生成函數為 $\frac{1}{1-x} \cdot \frac{1}{1-x^3} \cdots \frac{1}{1-x^{2k+1}} \cdots$ (9)

由於(8)式與(9)式相等,所以 $p_d(n) = p_0(n)$

另外一個例子是分割成 m 部分的方法數與分割成 n 部分最大數是 m 的方法數相等。

問題 4.

證明

$$\frac{1}{1-x} = \left(1 + x + x^2 + \dots + x^9\right) \left(1 + x^{10} + x^{20} + \dots + x^{90}\right) \left(1 + x^{100} + \dots + x^{900}\right) \dots \circ$$

左式中任一個 x^k 的係數為1,而右式中可以看出要求出 x^k 的係數需要看k這個數的十進位表示法,第一個括號代表個位數,然後十位數,百位數等等,顯然組合的方式只有一個,所以 x^k 的係數也是1,這就證明了左右兩式恆等。

問題 5.

求數列(1,2,3,…)的生成函數。

乍看之下我們沒有什麼好方法,只知道 $f(x)=1+2x+3x^2+\cdots$,然而當我們看 $\frac{1}{(1-x)^n}$ 時,就會知道 $(1-x)^{-n}=\sum_{k=0}^{\infty}\binom{k+n-1}{k}x^k$,此時,當 n=2 時 $a_k=\binom{k+1}{k}=k+1$,所以 $f(x)=\frac{1}{(1-x^2)}$ 。

(註) 廣義的生成函數

 $F\left(x\right) = \sum_{k=0}^{\infty} a_k \mu_k(x) \, \text{為數列}\left(a_k\right) \, \text{的一般生成函數 ,這裡的} \, \mu_k(x) \, \text{又稱為標 }$ 示函數 (Indicator functions)。 $\mu_k(x) \, \text{的選擇要符合下列條件:} \, \text{即當}$ $\left(a_k\right) \neq \left(b_k\right) \; \text{時,} \sum_{k=0}^{\infty} a_k \mu_k(x) \neq \sum_{k=0}^{\infty} b_k \mu_k(x) \, \text{。例如:我們可以令 } \mu_k(x) = \cos kx \, \text{。}$ 但是最常用的是令 $\mu_k(x) = x^k \, \text{。}$

4.2 指數生成函數 (Exponential Generating Functions) 定義 4.2:

 $F\left(x\right) = \sum_{k=0}^{\infty} \frac{a_k}{k!} \mu_k(x)$ 為數列 $\left(a_k\right)$ 的指數生成函數,其中 $\mu_k(x)$ 為標示函數。

為了方便討論,我們令 $\mu_k(x) = x^k$,因此 $\left(a_k\right)$ 的指數生成函數為

$$F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$$

例: $a_k = 1$, k = 0, 1, 2, \cdots , (a_k) 的指數生成函數為 e^x 。

例: $\Diamond P(n,k)$ 為一個n-集中取出k個元素所做成的排列數,則

$$P(n, k) = C(n, k) \cdot k! = \binom{n}{k} \cdot k!$$

因為

$$(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k = \sum_{k=0}^n \frac{\binom{n}{k} \cdot k!}{k!} x^k = \sum_{k=0}^n \frac{p(n,k)}{k!} x^k$$

所以 $\left(P(n,k)\right)$ 的指數生成函數為 $(1+x)^n$,這和 C(n,k) 的生成函數相同,再一次說明了 P(n,k) 和 C(n,k) 之間只差了k!。

問題 6.

用 a, b, c 來組成一個長度不大於 5 的字,在最多可用一個 b,一個 c 及三個 a 的情況下,問方法有多少種?

如果我們只看組合,則用下式可以看出不同的組合方式。

$$(1+ax+a^2x^2+a^3x^3)(1+bx)(1+cx)$$

但是我們要求的答案是排列,因此我們利用指數生成函數,即

$$(1 + \frac{a}{1!}x + \frac{a^{2}}{2!}x^{2} + \frac{a^{3}}{3!}x^{3})(1 + \frac{b}{1!}x)(1 + \frac{c}{1!}x)$$

$$= 1 + (\frac{a}{1!} + \frac{b}{1!} + \frac{c}{1!})x + (\frac{bc}{1!1!} + \frac{a^{2}}{2!}x^{2} + \frac{ab}{1!1!} + \frac{ac}{1!1!})x^{2}$$

$$+ (\frac{a^{3}}{3!} + \frac{abc}{1!1!1!} + \frac{a^{2}b}{2!1!} + \frac{a^{2}c}{2!1!})x^{3} + (\frac{a^{2}bc}{2!1!1!} + \frac{a^{3}b}{3!1!} + \frac{a^{3}c}{3!1!})x^{4} + \frac{a^{3}bc}{3!1!1!}x^{5}$$

現在我們可以求出不同的方法數,例如長度為3的方法有

 $3!(\frac{1}{3!} + \frac{1}{1!1!1!} + \frac{1}{2!1!} + \frac{1}{2!1!}) = 1 + 6 + 3 + 3 = 13$ 種。(令 a = b = c = 1) 問題 6 也就可以求出答案。

問題 7.

 $\binom{n}{k}$ 的求法。

令T(n,k) 為把n個元素分在k個有次序排定的非空集合之方法數,則 $T(n,k) = {n \brace k} \cdot k! \circ$ 為了求 ${n \brace k}$,我們先找出T(n,k) 的指數生成函數。令C(i) 代表元素 i 所被分到的集合,則 T(n,k) 可以想成是用k 種物品來形成的一個n 個位置的排列C(1)C(2)...C(n) ,所以T(n,k) 的生成函數

$$H(x) = (\frac{x}{1!} + \frac{x^2}{2!} + ...)^k = (e^x - 1)^k$$

利用二項式展開式

$$H(x) = ((-1) + e^{x})^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} (-1)^{i} (e^{x})^{k-i}$$

$$= \sum_{i=0}^{k} {k \choose i} (-1)^{i} \sum_{n=0}^{\infty} \frac{1}{n!} (k-i)^{n} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$

所以

$$T(n,k) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$
,

即

$$\begin{Bmatrix} {n \atop k} \end{Bmatrix} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n} \circ$$