國立高雄大學統計學研究所
最新消息 本所簡介 師資介紹 開設課程 教師成果 學生表現 學術演講 入學管道 學生園地 心在南方 表格下載 活動集錦 網路資源 關於我們
本站首頁 本校首頁 英文版
:::心在南方  
主題:統計下凡(二十六)
發表者:黃文璋 Email:huangwj@nuk.edu.tw 日期:2021/12/5 上午 10:16:43

26 交叉分析

投擲1公正銅板n次,則出現的正面數X之期望值μ=n/2,標準差σ=n1/2/2。如果n=10,000,則μ=5,000σ=50。由中央極限定理,將約有0.9544的機率,X介於[4,9005,100],此區間長度達200。至於正面數出現的相對頻率X/n,則亦有約0.9544的機率,介於[0.490.51]。此區間長度為0.02,並沒想像中的短。而且,尚有約0.0456的機率,XX/n,分別不落在前述二區間中。現令n增大些,如n=100,000,000。則μ=50,000,000σ=5,000。仍由中央極限定理,將約有同樣0.9544的機率,X介於[49,990,00050,010,000]。即出現的正面數X落在一更大的範國,寬達20,000,即可偏離期望值50,000,000更遠。至於正面數出現的相對頻率X/n,則有約0.9544的機率,介於[0.49990.5001],長度僅0.0002,即X/n將更接近期望值1/2。可看出隨著投擲數n之不斷增大,出現的正面數X,將可能愈來愈偏離期望值n/2,但正面數出現的相對頻率X/n,則將有高機率,愈來愈接近期望值1/2。但不論n有多大,X/n就是很難剛好等於1/2。也就是即使有些偏差,仍是正常的,不會因而懷疑銅板的公正性。反倒是,若X/n過度接近1/2,將可能被認為其中有弊。

曾有好幾年,高中數學裡有“信賴區間”的題材。要知即使在大學數學系的統計課程,信賴區間通常置於教科書的後半部,有夠完整的鋪陳後,才進入信賴區間。而為了學習信賴區間,所引進的中央極限定理,對大學數學系的學生,更絕非容易的題材。既然如此,那為何此二題材皆會進入高中?可能有些課綱委員,認為高中生該多懂些統計,至於得學那些?則可能因見到媒體上常會報導各式各樣的民調結果,於是覺得信賴區間乃如國民統計,高中生皆該理解。雖立意良善,卻未曾考慮此題材是否適合高中生。於是在95課綱時,信賴區間連同中央極限定理,便堂而皇之地進入高中數學了。又應是見到執行民調時,常會同時比較各族群對同一議題之支持度,此即“交叉分析”(Cross Analysis)。於是高中的選修數學裡,便有了交叉分析。由於很快便發現高中生不適合學此題材,99課綱便將交叉分析拿掉了。至於信賴區間,不少高中教師仍一直努力與其奮鬥,直到幾年前,在撰寫108課綱時,才徹底放棄此題材。至此讓高中師生困擾多年的信賴區間(及中央極限定理),才不得不離開高中數學了。以昭炯戒,雖一切都已成為過去,大家仍不妨思索,是什麼原因,使得當初信賴區間、交叉分析及中央極限定理,幾個那麼深的題材,會被放進高中數學?

交叉分析為何不適合在高中?底下為某教科書中的例子,而這在當時各版教科書中,是很典型的例子。先給出某校入學考試的所謂列聯表(Contingency table,又稱交叉表(cross tabulation))

錄取人數(A)

未錄取人數(F)

合計

男生(B)

24

36

60

女生(G)

36

54

90

合計

60

90

150

由此得

男生錄取率為P(A|B)=40%

女生錄取率為P(A|G)=40%

然後就說男生女生錄取率沒有差異。有些教科書會加上類如底下的一句:“至於比例不相等時,是否就代表男女生錄取率有差異,留待日後再學習。”這樣的寫法,顯示既具學術良知,卻又無可奈何。要知大學的犯罪防治學系,在有關嫌犯辨識的課程,如果所舉的例子,都是“符合xx條件者,便無犯罪之嫌”,且說“若不符合xx條件者,是否就有犯罪之嫌,留待日後再學習”,則這門課豈有何大用?像這種既講不清楚,也無法讓學生學到任何正確統計概念的交叉分析,居然能在眾多數學專家盯著下,溜進高中數學,實在令人難以理解。

這其中有兩點必須指出。首先,怎可由男女錄取率的“相等與否”,來判定錄取與男女性別是否有關?這毫無統計思維。我們已多次強調。如果投擲銅板100次,恰好出現50個正面及50個反面,並不會讓人相信銅板為公正,反而較易讓人懷疑其中有作假。像教科書這種例子看多後,恐會使初學者誤以為,事件出現次數的相對頻率,就是該等於事件的機率。要知,除非事先設定男女錄取率一定要相同(這時男女的“錄取標準”,就很難相同了),否則即使用抽籤(這時錄取與否總該跟性別無關了),來決定錄取名單,都不能保證抽出的男女錄取率相同。更不要說,追求男女平等,應是追求男女“錄取標準”相同,而非“錄取率”相同。其次是較微妙的一點。這只是一次錄取的數據,不宜過度引申。即一次考試的錄取率,豈能使用條件機率的符號P(A|B),及P(A|G)?來看個例子。投擲一銅板100次,出現52次正面,可將52/100=0.52當做銅板正面出現機率之估計值,但不會理所當然地視此值為銅板正面出現之機率。這點人們平常大都能了解,像是不能將一次民調的支持率,當做候選人的得票率。但不知何以統計只要一擺進高中數學課程中,人們往往就連常識都失去了。

我們再給一有名的例子。交叉分析並不只能用來檢定各類之比率相同與否,如樂透彩開了多期後,檢定14242個號碼出現之頻率是否相同。也可用來檢定各類事件(如連號)之出現,是否符合該有之比率,用途廣泛。著名的遺傳學家孟德爾(Gregor Johann Mondel1822-1884),有一關於豌豆生長的實驗。他將圓黃(round yellow)種子的豌豆,與縐綠(wrinkled green)種子的豌豆雜交。依其理論,會生長出圓黃、圓綠、縐黃及縐綠種子的後代之比率,應分別為

9/16=56.25%3/16=18.75%3/16=18.75%1/16=6.25%

經由一組有556個樣本的實驗,他得到如下表中的後代之觀測比率與預期比率。

圓黃

圓綠

縐黃

縐綠

合計

後代數

315

108

101

32

556

觀測比率

56.65%

19.42%

18.17%

5.76%

100%

預期比率

56.25%

18.75%

18.75%

6.25%

100%

乍看之下,4種豌豆觀測到的後代比率,與預期比率都有些差異,並不吻合該有之比率。但經過所謂“卡方檢定”(Chi-squared test,這當然無法在高中數學裡講授),即使可忍受的誤差α值大到0.90(一般α取為0.0010.0050.01,或0.05等,很少有大於0.1),都無法拒絕

虛無假設:孟德爾的理論為正確。

舉例來看。投擲一銅板10,000次,若出現的正面數落在區間[4,9945,006],便是即使將誤差α取為0.90,都無法拒絕虛無假設:銅板為公正。正面數離5,000那麼近,不但不會讓人相信銅板公正,反而可能立即被懷疑根本沒投擲,數據乃造假。同樣,孟德爾也踢到鐵板。由於此實驗結果與預期太吻合(fit too well,上述高中數學教科書,所舉有關錄取率的例子,則是完美吻合),曾引起著名統計學者費雪的懷疑,認為孟德爾可能是持續重覆做實驗,直到結果看起來“很好”才停止,然後只公佈結果“最好”的那組數據。偷雞不成蝕把米,這就是我們已多次強調的,對於隨機實驗,若結果與理論值過於一致,反而會讓人懷疑其中有弊。而眾所皆知,不論上述豌豆雜交或投擲銅板的實驗,當被質疑時,若重做一次實驗,想再度得到那麼“漂亮”的數據,機率可是微乎其微。

   暫無回應
 回本區首頁 
  回應總數0  
 
 
  下一頁  
  
 
我要回應
姓 名: 回應前,請先註冊登入
E-mail:
內 容:
驗證碼:  (VGPA
 
 
:::
 
*

地  址:811高雄市楠梓區高雄大學路700號
電  話:07-5919362 傳真:07-5919360 e-mail: stat@nuk.edu.tw
更新日期:2022/1/13 下午 01:35:57

2003/10/20起第 6329088 位訪客
*